is free. The whole CodeMetrics API should probably be reworked more, but
this is enough to allow deleting the duplicate code there for computing
whether an instruction is free.
All of the passes using this have been updated to pull in TTI and hand
it to the CodeMetrics stuff. Further, a dead CodeMetrics API
(analyzeFunction) is nuked for lack of users.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173036 91177308-0d34-0410-b5e6-96231b3b80d8
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.
There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.
The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.
I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).
I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171366 91177308-0d34-0410-b5e6-96231b3b80d8
directly.
This is in preparation for removing the use of the 'Attribute' class as a
collection of attributes. That will shift to the AttributeSet class instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171253 91177308-0d34-0410-b5e6-96231b3b80d8
Similarly inlining of the function is inhibited, if that would duplicate the call (in particular inlining is still allowed when there is only one callsite and the function has internal linkage).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170704 91177308-0d34-0410-b5e6-96231b3b80d8
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169131 91177308-0d34-0410-b5e6-96231b3b80d8
We use the enums to query whether an Attributes object has that attribute. The
opaque layer is responsible for knowing where that specific attribute is stored.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165488 91177308-0d34-0410-b5e6-96231b3b80d8
The hasFnAttr method has been replaced by querying the Attributes explicitly. No
intended functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164725 91177308-0d34-0410-b5e6-96231b3b80d8
reducing unroll count, otherwise the reduced unroll count is not taking
the "OptimizeForSize" attribute into account.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154007 91177308-0d34-0410-b5e6-96231b3b80d8
Patch by Brendon Cahoon!
This extends the existing LoopUnroll and LoopUnrollPass. Brendon
measured no regressions in the llvm test suite with -unroll-runtime
enabled. This implementation works by using the existing loop
unrolling code to unroll the loop by a power-of-two (default 8). It
generates an if-then-else sequence of code prior to the loop to
execute the extra iterations before entering the unrolled loop.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@146245 91177308-0d34-0410-b5e6-96231b3b80d8
We want heuristics to be based on accurate data, but more importantly
we don't want llvm to behave randomly. A benign trunc inserted by an
upstream pass should not cause a wild swings in optimization
level. See PR11034. It's a general problem with threshold-based
heuristics, but we can make it less bad.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140919 91177308-0d34-0410-b5e6-96231b3b80d8
This changes loop unrolling to use the same mechanism for trip count
computation as indvars. This is a stronger check that tends to unroll
more loops. A very common side-effect is that many single iteration
loops will be removed sooner. The real goal was simply to remove
dependence on canonical IVs.
x86 is break even.
ARM performance changes to expect (+ is good):
External/SPEC/CFP2000/183.equake/183.equake +13%
SingleSource/Benchmarks/Dhrystone/fldry +21%
MultiSource/Applications/spiff/spiff +3%
SingleSource/Benchmarks/Stanford/Puzzle -14%
The Puzzle regression is actually an improvement in loop optimization
that defeats GVN: rdar://problem/10065079.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139009 91177308-0d34-0410-b5e6-96231b3b80d8
SCEV unrolling can unroll loops with arbitrary induction variables. It
is a prerequisite for -disable-iv-rewrite performance. It is also
easily handles loops of arbitrary structure including multiple exits
and is generally more robust.
This is under a temporary option to avoid affecting default
behavior for the next couple of weeks. It is needed so that I can
checkin unit tests for updateUnloop.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137384 91177308-0d34-0410-b5e6-96231b3b80d8
will allow multiple context with different loop unroll parameters to run. This is a minor change and no effect
on existing application.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129449 91177308-0d34-0410-b5e6-96231b3b80d8
without whatever this was trying to do. When/if someone has the time to do some empirical
evaluations, it might be worth it to figure out what this code was trying to do and see if
it's worth resurrecting/fixing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123684 91177308-0d34-0410-b5e6-96231b3b80d8
size of a loop header instead of its own code size estimator.
This allows it to handle bitcasts etc more precisely.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122681 91177308-0d34-0410-b5e6-96231b3b80d8
must be called in the pass's constructor. This function uses static dependency declarations to recursively initialize
the pass's dependencies.
Clients that only create passes through the createFooPass() APIs will require no changes. Clients that want to use the
CommandLine options for passes will need to manually call the appropriate initialization functions in PassInitialization.h
before parsing commandline arguments.
I have tested this with all standard configurations of clang and llvm-gcc on Darwin. It is possible that there are problems
with the static dependencies that will only be visible with non-standard options. If you encounter any crash in pass
registration/creation, please send the testcase to me directly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@116820 91177308-0d34-0410-b5e6-96231b3b80d8
perform initialization without static constructors AND without explicit initialization
by the client. For the moment, passes are required to initialize both their
(potential) dependencies and any passes they preserve. I hope to be able to relax
the latter requirement in the future.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@116334 91177308-0d34-0410-b5e6-96231b3b80d8
register pressure and thus excess spills, which we don't currently recover from well. This should
be re-evaluated in the future if our ability to generate good spills/splits improves.
Partial fix for <rdar://problem/7635585>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@114919 91177308-0d34-0410-b5e6-96231b3b80d8
not unrolling loops that contain calls that would be better off getting inlined. This mostly
comes up when an interleaved devirtualization pass has devirtualized a call which the inliner
will inline on a future pass. Thus, rather than blocking all loops containing calls, add
a metric for "inline candidate calls" and block loops containing those instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@113535 91177308-0d34-0410-b5e6-96231b3b80d8
unrolling threshold to the optimize-for-size threshold. Basically, for loops containing calls, unrolling
can still be profitable as long as the loop is REALLY small.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@113439 91177308-0d34-0410-b5e6-96231b3b80d8
The threshold value of 50 is arbitrary, and I chose it simply by analogy to the inlining thresholds, where
the baseline unrolling threshold is slightly smaller than the baseline inlining threshold. This could
undoubtedly use some tuning.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@113306 91177308-0d34-0410-b5e6-96231b3b80d8
dependence on DominanceFrontier. Instead, add an explicit DominanceFrontier
pass in StandardPasses.h to ensure that it gets scheduled at the right
time.
Declare that loop unrolling preserves ScalarEvolution, and shuffle some
getAnalysisUsages.
This eliminates one LoopSimplify and one LCCSA run in the standard
compile opts sequence.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@109413 91177308-0d34-0410-b5e6-96231b3b80d8