MCJIT.
This patch decouples the two responsibilities of the RTDyldMemoryManager class,
memory management and symbol resolution, into two new classes:
RuntimeDyld::MemoryManager and RuntimeDyld::SymbolResolver.
The symbol resolution interface is modified slightly, from:
uint64_t getSymbolAddress(const std::string &Name);
to:
RuntimeDyld::SymbolInfo findSymbol(const std::string &Name);
The latter passes symbol flags along with symbol addresses, allowing RuntimeDyld
and others to reason about non-strong/non-exported symbols.
The memory management interface removes the following method:
void notifyObjectLoaded(ExecutionEngine *EE,
const object::ObjectFile &) {}
as it is not related to memory management. (Note: Backwards compatibility *is*
maintained for this method in MCJIT and OrcMCJITReplacement, see below).
The RTDyldMemoryManager class remains in-tree for backwards compatibility.
It inherits directly from RuntimeDyld::SymbolResolver, and indirectly from
RuntimeDyld::MemoryManager via the new MCJITMemoryManager class, which
just subclasses RuntimeDyld::MemoryManager and reintroduces the
notifyObjectLoaded method for backwards compatibility).
The EngineBuilder class retains the existing method:
EngineBuilder&
setMCJITMemoryManager(std::unique_ptr<RTDyldMemoryManager> mcjmm);
and includes two new methods:
EngineBuilder&
setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM);
EngineBuilder&
setSymbolResolver(std::unique_ptr<RuntimeDyld::SymbolResolver> SR);
Clients should use EITHER:
A single call to setMCJITMemoryManager with an RTDyldMemoryManager.
OR (exclusive)
One call each to each of setMemoryManager and setSymbolResolver.
This patch should be fully compatible with existing uses of RTDyldMemoryManager.
If it is not it should be considered a bug, and the patch either fixed or
reverted.
If clients find the new API to be an improvement the goal will be to deprecate
and eventually remove the RTDyldMemoryManager class in favor of the new classes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233509 91177308-0d34-0410-b5e6-96231b3b80d8
All symbols have to be stored in the global symbol to enable
cross-rtdyld-instance linking, so the local symbol table content is
redundant.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222867 91177308-0d34-0410-b5e6-96231b3b80d8
Previously, when loading an object file, RuntimeDyld (1) took ownership of the
ObjectFile instance (and associated MemoryBuffer), (2) potentially modified the
object in-place, and (3) returned an ObjectImage that managed ownership of the
now-modified object and provided some convenience methods. This scheme accreted
over several years as features were tacked on to RuntimeDyld, and was both
unintuitive and unsafe (See e.g. http://llvm.org/PR20722).
This patch fixes the issue by removing all ownership and in-place modification
of object files from RuntimeDyld. Existing behavior, including debugger
registration, is preserved.
Noteworthy changes include:
(1) ObjectFile instances are now passed to RuntimeDyld by const-ref.
(2) The ObjectImage and ObjectBuffer classes have been removed entirely, they
existed to model ownership within RuntimeDyld, and so are no longer needed.
(3) RuntimeDyld::loadObject now returns an instance of a new class,
RuntimeDyld::LoadedObjectInfo, which can be used to construct a modified
object suitable for registration with the debugger, following the existing
debugger registration scheme.
(4) The JITRegistrar class has been removed, and the GDBRegistrar class has been
re-written as a JITEventListener.
This should fix http://llvm.org/PR20722 .
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222810 91177308-0d34-0410-b5e6-96231b3b80d8
There are two methods in SectionRef that can fail:
* getName: The index into the string table can be invalid.
* getContents: The section might point to invalid contents.
Every other method will always succeed and returning and std::error_code just
complicates the code. For example, a section can have an invalid alignment,
but if we are able to get to the section structure at all and create a
SectionRef, we will always be able to read that invalid alignment.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219314 91177308-0d34-0410-b5e6-96231b3b80d8
field of RelocationValueRef, rather than the 'Addend' field.
This is consistent with RuntimeDyldELF's use of RelocationValueRef, and more
consistent with the semantics of the data being stored (the offset from the
start of a section or symbol).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217328 91177308-0d34-0410-b5e6-96231b3b80d8
RuntimeDyldImpl.
These are platform independent, and moving them to the base class allows
RuntimeDyldChecker to use them too.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216801 91177308-0d34-0410-b5e6-96231b3b80d8
Add header guards to files that were missing guards. Remove #endif comments
as they don't seem common in LLVM (we can easily add them back if we decide
they're useful)
Changes made by clang-tidy with minor tweaks.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215558 91177308-0d34-0410-b5e6-96231b3b80d8
Cleanup only: no functional change.
This patch makes RuntimeDyldMachO targets directly responsible for decoding
immediates, rather than letting them implement catch a callback from generic
code. Since this is a very target specific operation, it makes sense to let the
target-specific code drive it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215255 91177308-0d34-0410-b5e6-96231b3b80d8
We now (1) correctly decode the branch immediate, (2) modify the immediate to
corretly treat it as PC-rel, and (3) properly populate the stub entry.
Previously we had been doing each of these wrong.
<rdar://problem/17750739>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214285 91177308-0d34-0410-b5e6-96231b3b80d8
The previous implementation of RuntimeDyldMachO mixed logic for all targets
within a single class, creating problems for readability, maintainability, and
performance. To address these issues, this patch strips the RuntimeDyldMachO
class down to just target-independent functionality, and moves all
target-specific functionality into target-specific subclasses RuntimeDyldMachO.
The new class hierarchy is as follows:
class RuntimeDyldMachO
Implemented in RuntimeDyldMachO.{h,cpp}
Contains logic that is completely independent of the target. This consists
mostly of MachO helper utilities which the derived classes use to get their
work done.
template <typename Impl>
class RuntimeDyldMachOCRTPBase<Impl> : public RuntimeDyldMachO
Implemented in RuntimeDyldMachO.h
Contains generic MachO algorithms/data structures that defer to the Impl class
for target-specific behaviors.
RuntimeDyldMachOARM : public RuntimeDyldMachOCRTPBase<RuntimeDyldMachOARM>
RuntimeDyldMachOARM64 : public RuntimeDyldMachOCRTPBase<RuntimeDyldMachOARM64>
RuntimeDyldMachOI386 : public RuntimeDyldMachOCRTPBase<RuntimeDyldMachOI386>
RuntimeDyldMachOX86_64 : public RuntimeDyldMachOCRTPBase<RuntimeDyldMachOX86_64>
Implemented in their respective *.h files in lib/ExecutionEngine/RuntimeDyld/MachOTargets
Each of these contains the relocation logic specific to their target architecture.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213293 91177308-0d34-0410-b5e6-96231b3b80d8