r191088 is "llvm/tools/Makefile: Suppress building llvm-lto on cygming, for now, probably due to LTO.dll."
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@192104 91177308-0d34-0410-b5e6-96231b3b80d8
Generalize the API so we can distinguish symbols that are needed just for a DSO
symbol table from those that are used from some native .o.
The symbols that are only wanted for the dso symbol table can be dropped if
llvm can prove every other dso has a copy (linkonce_odr) and the address is not
important (unnamed_addr).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191922 91177308-0d34-0410-b5e6-96231b3b80d8
This makes it possible to add timers to the code generator and still use them
with -plugin-opt=emit-llvm.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191866 91177308-0d34-0410-b5e6-96231b3b80d8
At this time only Unix-based systems are supported. Windows has stubs and should re-route to the simulated mode.
Thanks to Sriram Murali for contributions to this patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191843 91177308-0d34-0410-b5e6-96231b3b80d8
infrastructure.
This was essentially work toward PGO based on a design that had several
flaws, partially dating from a time when LLVM had a different
architecture, and with an effort to modernize it abandoned without being
completed. Since then, it has bitrotted for several years further. The
result is nearly unusable, and isn't helping any of the modern PGO
efforts. Instead, it is getting in the way, adding confusion about PGO
in LLVM and distracting everyone with maintenance on essentially dead
code. Removing it paves the way for modern efforts around PGO.
Among other effects, this removes the last of the runtime libraries from
LLVM. Those are being developed in the separate 'compiler-rt' project
now, with somewhat different licensing specifically more approriate for
runtimes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191835 91177308-0d34-0410-b5e6-96231b3b80d8
I really should sort it or do something more sustainable, but I couldn't
work up the energy to do it... Sorry.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191832 91177308-0d34-0410-b5e6-96231b3b80d8
This was broken when options were moved up in r191680. No test because this is
specific LLVMgold.so/libLTO.so.
Patch by Tom Roeder!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191829 91177308-0d34-0410-b5e6-96231b3b80d8
Enable building the LTO library (.lib and.dll) and llvm-lto.exe on Windows with
MSVC and Mingw as well as re-enabling the associated test.
Patch by Greg Bedwell!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191823 91177308-0d34-0410-b5e6-96231b3b80d8
It's useful for the memory managers that are allocating a section to know what the name of the section is.
At a minimum, this is useful for low-level debugging - it's customary for JITs to be able to tell you what
memory they allocated, and as part of any such dump, they should be able to tell you some meta-data about
what each allocation is for. This allows clients that supply their own memory managers to do this.
Additionally, we also envision the SectionName being useful for passing meta-data from within LLVM to an LLVM
client.
This changes both the C and C++ APIs, and all of the clients of those APIs within LLVM. I'm assuming that
it's safe to change the C++ API because that API is allowed to change. I'm assuming that it's safe to change
the C API because we haven't shipped the API in a release yet (LLVM 3.3 doesn't include the MCJIT memory
management C API).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191804 91177308-0d34-0410-b5e6-96231b3b80d8
Tests to follow.
PIC with small code model and EH frame handling will not work with multiple modules. There are also some rough edges to be smoothed out for remote target support.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191722 91177308-0d34-0410-b5e6-96231b3b80d8
Enable building the LTO library (.lib and.dll) and llvm-lto.exe on Windows with
MSVC and Mingw as well as re-enabling the associated test.
Patch by Greg Bedwell!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191670 91177308-0d34-0410-b5e6-96231b3b80d8
This is a patch to add capability to llvm-objdump to dump COFF Import Table
entries, so that we can write tests for LLD checking Import Table contents.
llvm-objdump did not print anything but just file name if the format is COFF
and -private-headers option is given. This is a patch adds capability for
dumping DLL Import Table, which is specific to the COFF format.
In this patch I defined a new iterator to iterate over import table entries.
Also added a few functions to COFFObjectFile.cpp to access fields of the entry.
Differential Revision: http://llvm-reviews.chandlerc.com/D1719
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191472 91177308-0d34-0410-b5e6-96231b3b80d8
Various Windows SDK headers use _MSC_VER values to figure out what
version of the VC++ headers they're using, in particular for SAL macros.
Patch by Paul Hampson!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191015 91177308-0d34-0410-b5e6-96231b3b80d8
This puts all the global PassManager debugging flags, like
-print-after-all and -time-passes, behind a managed static. This
eliminates their static initializers and, more importantly, exit-time
destructors.
The only behavioral change I anticipate is that tools need to
initialize the PassManager before parsing the command line in order to
export these options, which makes sense. Tools that already initialize
the standard passes (opt/llc) don't need to do anything new.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190974 91177308-0d34-0410-b5e6-96231b3b80d8
The 'Deprecated' class allows you to specify a SubtargetFeature that the
instruction is deprecated on.
The 'ComplexDeprecationPredicate' class allows you to define a custom
predicate that is called to check for deprecation.
For example:
ComplexDeprecationPredicate<"MCR">
would mean you would have to define the following function:
bool getMCRDeprecationInfo(MCInst &MI, MCSubtargetInfo &STI,
std::string &Info)
Which returns 'false' for not deprecated, and 'true' for deprecated
and store the warning message in 'Info'.
The MCTargetAsmParser constructor was chaned to take an extra argument of
the MCInstrInfo class, so out-of-tree targets will need to be changed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190598 91177308-0d34-0410-b5e6-96231b3b80d8
In DIBuilder, the context field of a TAG_member is updated to use the
scope reference. Verifier is updated accordingly.
DebugInfoFinder now needs to generate a type identifier map to have
access to the actual scope. Same applies for BreakpointPrinter.
processModule of DebugInfoFinder is called during initialization phase
of the verifier to make sure the type identifier map is constructed early
enough.
We are now able to unique a simple class as demonstrated by the added
testing case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190334 91177308-0d34-0410-b5e6-96231b3b80d8
The work on this project was left in an unfinished and inconsistent state.
Hopefully someone will eventually get a chance to implement this feature, but
in the meantime, it is better to put things back the way the were. I have
left support in the bitcode reader to handle the case-range bitcode format,
so that we do not lose bitcode compatibility with the llvm 3.3 release.
This reverts the following commits: 155464, 156374, 156377, 156613, 156704,
156757, 156804 156808, 156985, 157046, 157112, 157183, 157315, 157384, 157575,
157576, 157586, 157612, 157810, 157814, 157815, 157880, 157881, 157882, 157884,
157887, 157901, 158979, 157987, 157989, 158986, 158997, 159076, 159101, 159100,
159200, 159201, 159207, 159527, 159532, 159540, 159583, 159618, 159658, 159659,
159660, 159661, 159703, 159704, 160076, 167356, 172025, 186736
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190328 91177308-0d34-0410-b5e6-96231b3b80d8
We used to generate the compact unwind encoding from the machine
instructions. However, this had the problem that if the user used `-save-temps'
or compiled their hand-written `.s' file (with CFI directives), we wouldn't
generate the compact unwind encoding.
Move the algorithm that generates the compact unwind encoding into the
MCAsmBackend. This way we can generate the encoding whether the code is from a
`.ll' or `.s' file.
<rdar://problem/13623355>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190290 91177308-0d34-0410-b5e6-96231b3b80d8
Iterator of std::vector may be implemented as a raw pointer. In
this case ADL does not find the find() function in the std namespace.
For example, this is the case with STDCXX implementation of vector.
Patch by Konstantin Tokarev.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189733 91177308-0d34-0410-b5e6-96231b3b80d8
Requires shuffling the CPack code up before add_subdirectory(tools), but
that's where the version settings are anyway.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189615 91177308-0d34-0410-b5e6-96231b3b80d8
When unrolling is disabled in the pass manager, the loop vectorizer should also
not unroll loops. This will allow the -fno-unroll-loops option in Clang to
behave as expected (even for vectorizable loops). The loop vectorizer's
-force-vector-unroll option will (continue to) override the pass-manager
setting (including -force-vector-unroll=0 to force use of the internal
auto-selection logic).
In order to test this, I added a flag to opt (-disable-loop-unrolling) to force
disable unrolling through opt (the analog of -fno-unroll-loops in Clang). Also,
this fixes a small bug in opt where the loop vectorizer was enabled only after
the pass manager populated the queue of passes (the global_alias.ll test needed
a slight update to the RUN line as a result of this fix).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189499 91177308-0d34-0410-b5e6-96231b3b80d8
This is just enough to get "llvm-ranlib foo.a" working and tested. Making
llvm-ranlib a symbolic link to llvm-ar doesn't work so well with llvm's option
parsing, but ar's option parsing is mostly custom anyway.
This patch also removes the -X32_64 option. Looks like it was just added in
r10297 as part of implementing the current command line parsing. I can add it
back (with a test) if someone really has AIX portability problems without it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189489 91177308-0d34-0410-b5e6-96231b3b80d8
This allows setting-up the LLVM_EXTERNAL_* CMake variables that some people are using,
e.g. to set the source directory of the project in a different place.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189415 91177308-0d34-0410-b5e6-96231b3b80d8
These files are intended to live in the msbuild toolset directory, which
is somewhere like:
C:\Program Files (x86)\MSBuild\Microsoft.Cpp\
v4.0\Platforms\Win32\PlatformToolsets\llvm
More work is needed to install them as part of the NSIS installer.
Patch by Warren Hunt!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189411 91177308-0d34-0410-b5e6-96231b3b80d8
----
Add new API lto_codegen_compile_parallel().
This API is proposed by Nick Kledzik. The semantic is:
--------------------------------------------------------------------------
Generate code for merged module into an array of native object files. On
success returns a pointer to an array of NativeObjectFile. The count
parameter returns the number of elements in the array. Each element is
a pointer/length for a generated mach-o/ELF buffer. The buffer is owned
by the lto_code_gen_t and will be freed when lto_codegen_dispose() is called,
or lto_codegen_compile() is called again. On failure, returns NULL
(check lto_get_error_message() for details).
extern const struct NativeObjectFile*
lto_codegen_compile_parallel(lto_code_gen_t cg, size_t *count);
---------------------------------------------------------------------------
This API is currently only called on OSX platform. Linux or other Unixes
using GNU gold are not supposed to call this function, because on these systems,
object files are fed back to linker via disk file instead of memory buffer.
In this commit, lto_codegen_compile_parallel() simply calls
lto_codegen_compile() to return a single object file. In the near future,
this function is the entry point for compilation with partition. Linker can
blindly call this function even if partition is turned off; in this case,
compiler will return only one object file.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189386 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commits r189319 and r189315. r189315 broke some tests on what I
believe are big-endian platforms.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189321 91177308-0d34-0410-b5e6-96231b3b80d8
This API is proposed by Nick Kledzik. The semantic is:
--------------------------------------------------------------------------
Generate code for merged module into an array of native object files. On
success returns a pointer to an array of NativeObjectFile. The count
parameter returns the number of elements in the array. Each element is
a pointer/length for a generated mach-o/ELF buffer. The buffer is owned
by the lto_code_gen_t and will be freed when lto_codegen_dispose() is called,
or lto_codegen_compile() is called again. On failure, returns NULL
(check lto_get_error_message() for details).
extern const struct NativeObjectFile*
lto_codegen_compile_parallel(lto_code_gen_t cg, size_t *count);
---------------------------------------------------------------------------
This API is currently only called on OSX platform. Linux or other Unixes
using GNU gold are not supposed to call this function, because on these systems,
object files are fed back to linker via disk file instead of memory buffer.
In this commit, lto_codegen_compile_parallel() simply calls
lto_codegen_compile() to return a single object file. In the near future,
this function is the entry point for compilation with partition. Linker can
blindly call this function even if partition is turned off; in this case,
compiler will return only one object file.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189297 91177308-0d34-0410-b5e6-96231b3b80d8
It was previously not being built on Windows because the cmake file relied
on a sed script to generate a .in file that llvm-config needs.
By using cmake's configure_file function, we can get rid off the sed hack,
and also have this work on Windows.
Differential Revision: http://llvm-reviews.chandlerc.com/D1481
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189125 91177308-0d34-0410-b5e6-96231b3b80d8
Allow CMake to pick up external projects in llvm/tools without the need to modify the "llvm/tools/CMakeLists.txt" file.
This makes it easier to work with projects that live in other repositories, without needing to specify each one in "llvm/tools/CMakeLists.txt".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188921 91177308-0d34-0410-b5e6-96231b3b80d8
Like yaml ObjectFiles, this will be very useful for testing the MC CFG
implementation (mostly MCObjectDisassembler), by matching the output
with YAML, and for potential users of the MC CFG, by using it as an input.
There isn't much to the actual format, it is just a serialization of the
MCModule class. Of note:
- Basic block references (pred/succ, ..) are represented by the BB's
start address.
- Just as in the MC CFG, instructions are MCInsts with a size.
- Operands have a prefix representing the type (only register and
immediate supported here).
- Instruction opcodes are represented by their names; enum values aren't
stable, enum names mostly are: usually, a change to a name would need
lots of changes in the backend anyway.
Same with registers.
All in all, an example is better than 1000 words, here goes:
A simple binary:
Disassembly of section __TEXT,__text:
_main:
100000f9c: 48 8b 46 08 movq 8(%rsi), %rax
100000fa0: 0f be 00 movsbl (%rax), %eax
100000fa3: 3b 04 25 48 00 00 00 cmpl 72, %eax
100000faa: 0f 8c 07 00 00 00 jl 7 <.Lend>
100000fb0: 2b 04 25 48 00 00 00 subl 72, %eax
.Lend:
100000fb7: c3 ret
And the (pretty verbose) generated YAML:
---
Atoms:
- StartAddress: 0x0000000100000F9C
Size: 20
Type: Text
Content:
- Inst: MOV64rm
Size: 4
Ops: [ RRAX, RRSI, I1, R, I8, R ]
- Inst: MOVSX32rm8
Size: 3
Ops: [ REAX, RRAX, I1, R, I0, R ]
- Inst: CMP32rm
Size: 7
Ops: [ REAX, R, I1, R, I72, R ]
- Inst: JL_4
Size: 6
Ops: [ I7 ]
- StartAddress: 0x0000000100000FB0
Size: 7
Type: Text
Content:
- Inst: SUB32rm
Size: 7
Ops: [ REAX, REAX, R, I1, R, I72, R ]
- StartAddress: 0x0000000100000FB7
Size: 1
Type: Text
Content:
- Inst: RET
Size: 1
Ops: [ ]
Functions:
- Name: __text
BasicBlocks:
- Address: 0x0000000100000F9C
Preds: [ ]
Succs: [ 0x0000000100000FB7, 0x0000000100000FB0 ]
<snip>
...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188890 91177308-0d34-0410-b5e6-96231b3b80d8
In order to appease people (in Apple) who accuse me for committing "huge change" (?) without proper review.
Thank Eric for fixing a compile-warning.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188204 91177308-0d34-0410-b5e6-96231b3b80d8
1. Add some helper classes for partitions. They are designed in a
way such that the top-level LTO driver will not see much difference
with or without partitioning.
2. Introduce work-dir. Now all intermediate files generated during
LTO phases will be saved under work-dir. User can specify the workdir
via -lto-workdir=/path/to/dir. By default the work-dir will be
erased before linker exit. To keep the workdir, do -lto-keep, or -lto-keep=1.
TODO: Erase the workdir, if the linker exit prematurely.
We are currently not able to remove directory on signal. The support
routines simply ignore directory.
3. Add one new API lto_codegen_get_files_need_remove().
Linker and LTO plugin will communicate via this API about which files
(including directories) need to removed before linker exit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188188 91177308-0d34-0410-b5e6-96231b3b80d8
Currently, when an invalid attribute is encountered on processing a .s file,
clang will abort due to llvm_unreachable. Invalid user input should not cause
an abnormal termination of the compiler. Change the interface to return a
boolean to indicate the failure as a first step towards improving hanlding of
malformed user input to clang.
Signed-off-by: Saleem Abdulrasool <compnerd@compnerd.org>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188047 91177308-0d34-0410-b5e6-96231b3b80d8
* ELFTypes.h contains template magic for defining types based on endianess, size, and alignment.
* ELFFile.h defines the ELFFile class which provides low level ELF specific access.
* ELFObjectFile.h contains ELFObjectFile which uses ELFFile to implement the ObjectFile interface.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188022 91177308-0d34-0410-b5e6-96231b3b80d8
As of this revision, all functions of LTOCodeGenerator are consistent in
ret-true-on-succ.
Tested on multiple OSes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187864 91177308-0d34-0410-b5e6-96231b3b80d8
The ExtractLoops function tries to reduce the failing test case by extracting
one or more loops from the misoptimized piece of the program. In doing this,
ExtractLoops must keep the MiscompiledFunctions vector up-to-date by ensuring
that the pointers refer to functions in the current failing program.
Unfortunately, this is not trivial because:
- ExtractLoops is iterative, and there are several early exits (and the
MiscompiledFunctions vector must be consistent with the current program at
every non-fatal exit point).
- Several of the utility functions used by ExtractLoops (such as
TestOptimizer, some of which are called through the TestFn callback
parameter, and Linker::LinkModules) delete their inputs upon success.
This change adds several updates of the MiscompiledFunctions vector at
different points. The first is after the initial call to TestMergedProgram
which checks that the loop-extracted program still works. The second is after
the call to TestFn (TestOptimizer, for example). This function will delete its
inputs (which is why the existing ExtractLoops logic cloned the inputs first).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187674 91177308-0d34-0410-b5e6-96231b3b80d8
Function attributes are the future! So just query whether we want to realign the
stack directly from the function instead of through a random target options
structure.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187618 91177308-0d34-0410-b5e6-96231b3b80d8
If no other operation is specified, 's' becomes an operation instead of an
modifier. The s operation just creates a symbol table. It is the same as
running ranlib.
We assume the archive was created by a sane ar (like llvm-ar or gnu ar) and
if the symbol table is present, then it is current. We use that to optimize
the most common case: a broken build system that thinks it has to run ranlib.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187353 91177308-0d34-0410-b5e6-96231b3b80d8
Merge consecutive if-regions if they contain identical statements.
Both transformations reduce number of branches. The transformation
is guarded by a target-hook, and is currently enabled only for +R600,
but the correctness has been tested on X86 target using a variety of
CPU benchmarks.
Patch by: Mei Ye
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187278 91177308-0d34-0410-b5e6-96231b3b80d8
There's no need to specify a flag to omit frame pointer elimination on non-leaf
nodes...(Honestly, I can't parse that option out.) Use the function attribute
stuff instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187093 91177308-0d34-0410-b5e6-96231b3b80d8
The main observation is that we never need both the filesize and the map size.
When mapping a slice of a file, it doesn't make sense to request a null
terminator and that would be the only case where the filesize would be used.
There are other cleanups that should be done in this area:
* A client should not have to pass the size (even an explicit -1) to say if
it wants a null terminator or not, so we should probably swap the argument
order.
* The default should be to not require a null terminator. Very few clients
require this, but many end up asking for it just because it is the default.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186984 91177308-0d34-0410-b5e6-96231b3b80d8
The gold plugin was passing the desired map size as the file size. This was
working for two reasons:
* Recent version of gold provide the get_view callback, so this code was not
used.
* In older versions, getOpenFile was called, but the file size is never used
if we don't require null terminated buffers and map size defaults to the
file size.
Thanks to Eli Bendersky for noticing this.
I will try to make this api a bit less error prone.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186978 91177308-0d34-0410-b5e6-96231b3b80d8
The symbol table has forward references in the file. Instead of allocating
a temporary buffer or counting the size and then writing, this implementation
writes a dummy value first and patches it once the final value is known.
There is room for performance improvement. I will implement them as soon as I
get some other features (like a ranlib mode) in.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186934 91177308-0d34-0410-b5e6-96231b3b80d8
Use the function attributes to pass along the stack protector buffer size.
Now that we have robust function attributes, don't use a command line option to
specify the stack protecto buffer size.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186863 91177308-0d34-0410-b5e6-96231b3b80d8
There already have two "dead" functions, initialize{IPO|IPA}, defined for
similar purpose. I decide not to call these two functions for two reasons:
o. they don't cover all LTO passes (which will soon be separated into IPO
and post-IPO passes)
o. We have not yet figured out the right passes and the ordering for IPO
and post-IPO stages, meaning this change is only for the time being.
Since LTO passes are registered, we are now able to print IR before and
after particular point.
For OSX users:
--------------
"...-Wl,-mllvm -Wl,-print-after=<pass-name>" will print IR after the
specified pass.
For Other UNIX with GNU gold linker:
------------------------------------
"-Wl,-plugin-opt=-print-after=<pass-name>" should work.
(NOTE: no need for "-Wl,-mllvm")
Strip "-Wl," if flags are fed directly to linker instead of clang/clang++.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186853 91177308-0d34-0410-b5e6-96231b3b80d8
This matches gnu archive behavior and since archive member order can change
which member is used, not changing the order on replacement looks like the
right thing to do.
This patch also refactors the logic for which archive member to keep and
whether to move it to a helper function (computeInsertAction). The
nesting in computeNewArchiveMembers was getting a bit confusing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186829 91177308-0d34-0410-b5e6-96231b3b80d8
We were incorrectly computing where to insert a member if it was replacing
a previous member that was before the insert point.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186792 91177308-0d34-0410-b5e6-96231b3b80d8
The original change was rolled back in r186627 because of test
failures on the big endian machine. I believe I fixed the issue
so re-submitting.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186734 91177308-0d34-0410-b5e6-96231b3b80d8
This allows "llvm-mc -disassemble" to accept two new features:
+ Using comma as a byte separator
+ Grouping bytes with '[' and ']' pairs.
The behaviour outside a [...] group is unchanged. But within the group once
llvm-mc encounters a true error, it stops rather than trying to resynchronise
the stream at the next byte. This is more useful for disassembly tests, where
we have an almost-instruction in mind and don't care what the misaligned
interpretation would be. Particularly if it means llvm-mc won't actually see
the next intended almost-instruction.
As a side effect, this means llvm-mc can disassemble its own -show-encoding
output if copy-pasted.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186661 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Dump optional data directory entries in the PE/COFF header, so that
we can test the output of LLD linker. This patch updates the test binary
file, but the source of the binary is the same. I just re-linked the file.
I don't know how the previous file was linked, but the previous file did
not have any data directory entries for some reason.
Reviewers: rafael
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1148
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186623 91177308-0d34-0410-b5e6-96231b3b80d8
This centralizes the handling of O_BINARY and opens the way for hiding more
differences (like how open behaves with directories).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186447 91177308-0d34-0410-b5e6-96231b3b80d8
This is a micro optimization. Instead of going char*->StringRef->Twine->char*,
go char*->Twine->char* and avoid having to copy the filename on the stack.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186380 91177308-0d34-0410-b5e6-96231b3b80d8
Now that we have robust function attributes, don't use a command line option to
specify the stack protecto buffer size.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186217 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes two bugs is lib/Object that the use in llvm-ar found:
* In OS X created archives, the name can be padded with nulls. Strip them.
* In the constructor, remember the first non special member and use that in
begin_children. This makes sure we skip all special members, not just the
first one.
The change to llvm-ar itself consist of
* Using lib/Object for reading archives instead of ArchiveReader.cpp.
* Writing the modified archive directly, instead of creating an in memory
representation.
The old Archive library was way more general than what is needed, as can
be seen by the diffstat of this patch.
Having llvm-ar using lib/Object now opens the way for creating regular symbol
tables for both native objects and bitcode files so that we can use those
archives for LTO.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186197 91177308-0d34-0410-b5e6-96231b3b80d8
* All systems we support have some form of long name support.
* The options has different names and semantics in different implementations
('f' on gnu, 'T' on OS X), which makes it unlikely it is normally used on
build systems.
* It was completely untested.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186078 91177308-0d34-0410-b5e6-96231b3b80d8
The problem with running internalize before we're ready to output an object file
is that it may change a 'weak' symbol into an internal one, but that symbol
could be needed by an external object file --- e.g. with arclite.
<rdar://problem/14334895>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185882 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes a regression introduced by r185726: the new call to get
a unique file does not prepend the system temporary directory, so
we need to anchor on the file that the temporary file gets moved
to to ensure we're on the same file system.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185825 91177308-0d34-0410-b5e6-96231b3b80d8
This function is complementary to createTemporaryFile. It handles the case were
the unique file is *not* temporary: we will rename it in the end. Since we
will rename it, the file has to be in the same filesystem as the final
destination and we don't prepend the system temporary directory.
This has a small semantic difference from unique_file: the default mode is 0666.
This matches the behavior of most unix tools. For example, with this change
lld now produces files with the same permissions as ld. I will add a test
of this change when I port clang over to createUniqueFile (next commit).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185726 91177308-0d34-0410-b5e6-96231b3b80d8
parseCommandLine prints and error and exists if no operation is specified, so
it never returns NoOperation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185691 91177308-0d34-0410-b5e6-96231b3b80d8
We really want bitcode files to behave as regular object files in archives, so
we don't need to track that a member is bitcode.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185681 91177308-0d34-0410-b5e6-96231b3b80d8
This is dead code since PIC16 was removed in 2010. The result was an odd mix,
where some parts would carefully pass it along and others would assert it was
zero (most of the object streamer for example).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185436 91177308-0d34-0410-b5e6-96231b3b80d8
This kind of simplification is sometimes useful, but in general it's not correct.
As GNU/kFreeBSD is an hybrid system, for kernel-related issues we want to match the
build definitions used for FreeBSD, whereas for userland-related issues we want to
match the definitions used for other systems with Glibc.
The current modification adjusts the build system so that they can be distinguished,
and explicitly adds GNU/kFreeBSD to the build checks in which it belongs.
Fixes bug #16444.
Patch by Robert Millan in the context of Debian.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185311 91177308-0d34-0410-b5e6-96231b3b80d8
- warn users when -debug-ir is used with old JIT engine (only partial debug
info is available)
For example, to debug an IR file with GDB (that supports JIT registration), do:
$ gdb --args lli -use-mcjit -debug-ir testcase.ll
(gdb) break main
(gdb) run
<Process continues to lli main>
(gdb) continue
<Process continues to testcase.ll main()
(gdb) step
<Now stepping through the LLVM IR in testcase.ll>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185197 91177308-0d34-0410-b5e6-96231b3b80d8
sys::fs::unique_file will now loop infinitely if provided with a file name
without '%' characters and the input file already exists. As a result, bugpoint
cannot use a fixed file name for the execution output (including the reference
output).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185166 91177308-0d34-0410-b5e6-96231b3b80d8
No functionality change.
It should suffice to check the type of a debug info metadata, instead of
calling Verify. For cases where we know the type of a DI metadata, use
assert.
Also update testing cases to make them conform to the format of DI classes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185135 91177308-0d34-0410-b5e6-96231b3b80d8
No functionality change.
It should suffice to check the type of a debug info metadata, instead of
calling Verify.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185020 91177308-0d34-0410-b5e6-96231b3b80d8
Where a source tree is complete with lld, lldb and polly, it may not be possible to use cmake to configure build scripts if the host compiler it not capable of compiling these sub-projects. This change makes it possible to first build a bootstrap clang compiler when can then be used to build a complete llvm toolchain. An example bootstrap build sequence could be as follows:
$ mkdir bootstrap
$ cd bootstrap
$ cmake -G 'Unix Makefiles'
-DCMAKE_BUILD_TYPE:STRING=Release
-DCMAKE_PREFIX_PATH:STRING=$(pwd)
-DLLVM_TARGETS_TO_BUILD:STRING=host
-DLLVM_INCLUDE_TOOLS:STRING=bootstrap-only
../source
$ make clang # build clang only for host
$ cd ..
$ export CC=$(realpath bootstrap/bin)/clang
$ export CXX=$(realpath bootstrap/bin)/clang++
$ mkdir final
$ cd final
$ cmake -G 'Unix Makefiles' ../source
$ make all check-all
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184924 91177308-0d34-0410-b5e6-96231b3b80d8
Although in reality the symbol table in ELF resides in a section, the
standard requires that there be no more than one SHT_SYMTAB. To enforce
this constraint, it is cleaner to group all the symbols under a
top-level `Symbols` key on the object file.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184627 91177308-0d34-0410-b5e6-96231b3b80d8
The improperly aligned section content in the output was causing
buildbot failures. This should fix them.
Incidentally, this results in a simpler and more robust API for
ContiguousBlobAccumulator.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184621 91177308-0d34-0410-b5e6-96231b3b80d8
Previously we unconditionally enforced that section references in
symbols in the YAML had a name that was a section name present in the
object, and linked the references to that section. Now, permit empty
section names (already the default, if the `Section` key is not
provided) to indicate SHN_UNDEF.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184513 91177308-0d34-0410-b5e6-96231b3b80d8
Instead, just have 3 sub-lists, one for each of
{STB_LOCAL,STB_GLOBAL,STB_WEAK}.
This allows us to be a lot more explicit w.r.t. the symbol ordering in
the object file, because if we allowed explicitly setting the STB_*
`Binding` key for the symbol, then we might have ended up having to
shuffle STB_LOCAL symbols to the front of the list, which is likely to
cause confusion and potential for error.
Also, this new approach is simpler ;)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184506 91177308-0d34-0410-b5e6-96231b3b80d8
After this patch, the ELF file produced by
`yaml2obj-elf-symbol-basic.yaml`, when linked and executed on x86_64
(under SysV ABI, obviously; I tested on Linux), produces a working
executable that goes into an infinite loop!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184469 91177308-0d34-0410-b5e6-96231b3b80d8
One of the key things that the YAML format abstracts over is the use of
section numbers for referencing sections. Instead, textual section names
are used, which yaml2obj then translates into appropriate section
numbers. (Technically ELF doesn't care about section names (only section
numbers), but since this is a testing tool, readability counts).
This simplifies using section names as symbolic references in various
parts of the code. An upcoming commit will use this to allow symbols to
reference sections.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184467 91177308-0d34-0410-b5e6-96231b3b80d8
This commit completely removes what is left of the simplify-libcalls
pass. All of the functionality has now been migrated to the instcombine
and functionattrs passes. The following C API functions are now NOPs:
1. LLVMAddSimplifyLibCallsPass
2. LLVMPassManagerBuilderSetDisableSimplifyLibCalls
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184459 91177308-0d34-0410-b5e6-96231b3b80d8
Original message:
Don't include directory names in archives.
This matches the behavior of both gnu and os x versions of ar.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184423 91177308-0d34-0410-b5e6-96231b3b80d8
This is a basic implementation - we still don't have any support (that I
know of) for dumping DWARF expressions in a meaningful way, so the
location information itself is just printed as a sequence of bytes as we
do elsewhere.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184361 91177308-0d34-0410-b5e6-96231b3b80d8
This matches GNU ar behavior. Also remove the now unused getFileStatus method.
Not sure how to add a test, it would have to run ls -l or something like that.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184337 91177308-0d34-0410-b5e6-96231b3b80d8
Previously, we would monkeypatch the vector of YAML::Section's in order
to ensure that the SHT_NULL entry is present. Now we just add it
unconditionally.
The proliferation of small numerical adjustments is beginning to
frighten me, but I can't think of a way having a single point of truth
for them without introducing a whole new layer of data structures (i.e.
lots of code and complexity) between the YAML and binary ELF formats.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184260 91177308-0d34-0410-b5e6-96231b3b80d8
This will be needed later for holding symbol names, due to the libObject
issue mentioned in the commit message of r184161.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184242 91177308-0d34-0410-b5e6-96231b3b80d8
Someone may want to do something crazy, like replace these objects if they
change or something.
No functionality change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184175 91177308-0d34-0410-b5e6-96231b3b80d8
A bug in libObject will cause it to assert() if a symbol table's string
table and the section header string table are the same section, so we
need to ensure that we emit two different string tables (among other
things). The problematic code is the hardcoded usage of ".strtab"
(`dot_strtab_sec`) for looking up symbol names in
ELFObjectFile<ELFT>::getSymbolName.
I discussed this with Michael, and he has some local improvements to the
ELF code in libObject that, among other things, should fix our handling
of this scenario.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184161 91177308-0d34-0410-b5e6-96231b3b80d8
I was spotting garbage in the output. I'd like to just zero the entire
ELFYAML::Section to be sure, but it contains non-POD types. (I'm also
trying to avoid bloating the ELFYAML::Foo classes with a bunch of
constructor code).
No test, since this is by its very nature unpredictable. I'm pretty sure
that one of the sanitizers would catch it immediately though.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184160 91177308-0d34-0410-b5e6-96231b3b80d8
The error message was:
/home/espindola/llvm/llvm/tools/gold/gold-plugin.cpp: In function ‘ld_plugin_status cleanup_hook()’:
/home/espindola/llvm/llvm/tools/gold/gold-plugin.cpp:461:30: error: cannot pass objects of non-trivially-copyable type ‘std::string {aka class std::basic_string<char>}’ through ‘...’
I will check if this was a clang or gcc issue.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184138 91177308-0d34-0410-b5e6-96231b3b80d8