Once the auxiliary fields relating to the filename have been inspected, any
following auxiliary fields need not be visited as they have been consumed (the
following fields comprise the filepath as a single unit).
Adjust the test to catch this even if ASAN is not enabled.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206190 91177308-0d34-0410-b5e6-96231b3b80d8
Rather than switching behaviour on whether a previous symbol has an auxiliary
symbol record for the next count of elements, simply iterate over the auxiliary
symbols right after processing the current symbol entry. This makes the
behaviour much simpler to follow and similar to llvm-readobj and yaml2obj.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206146 91177308-0d34-0410-b5e6-96231b3b80d8
If a filename is a multiple of 18 characters, there will be no null-terminator.
This will result in an invalid access by the constructed StringRef. Add a test
case to exercise this and fix that handling. Address this same vulnerability in
llvm-readobj as well.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206145 91177308-0d34-0410-b5e6-96231b3b80d8
The auxiliary file records are contiguous and only contain the filename.
Construct a StringRef directly rather than copying to a temporary buffer.
Suggested by majnemer on IRC!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206139 91177308-0d34-0410-b5e6-96231b3b80d8
Add support for file auxiliary symbol entries in COFF symbol tables. A COFF
symbol table with a FILE entry is followed by sizeof(__FILE__) / 18 auxiliary
symbol records which contain the filename. Read them and form the original
filename that the record contains. Then display the name in the output.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206126 91177308-0d34-0410-b5e6-96231b3b80d8
When -mcpu=native is passed, autodetect the host CPU and pass that
as the CPU name to the TargetMachine factory method.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206095 91177308-0d34-0410-b5e6-96231b3b80d8
The patch implements support for both relocation record formats: Elf_Rel
and Elf_Rela. It is possible to define relocation against symbol only.
Relocations against sections will be implemented later. Now yaml2obj
recognizes X86_64, MIPS and Hexagon relocation types.
Example of relocation section specification:
Sections:
- Name: .text
Type: SHT_PROGBITS
Content: "0000000000000000"
AddressAlign: 16
Flags: [SHF_ALLOC]
- Name: .rel.text
Type: SHT_REL
Info: .text
AddressAlign: 4
Relocations:
- Offset: 0x1
Symbol: glob1
Type: R_MIPS_32
- Offset: 0x2
Symbol: glob2
Type: R_MIPS_CALL16
The patch reviewed by Michael Spencer, Sean Silva, Shankar Easwaran.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206017 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r205479.
It turns out that nm does use addresses, it is just that every reasonable
relocatable ELF object has sections with address 0. I have no idea if those
exist in reality, but it at least it shows that llvm-nm should use the name
address.
The added test was includes an unusual .o file with non 0 section addresses. I
created it by hacking ELFObjectWriter.cpp.
Really sorry for the churn.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205493 91177308-0d34-0410-b5e6-96231b3b80d8
What llvm-nm prints depends on the file format. On ELF for example, if the
file is relocatable, it prints offsets. If it is not, it prints addresses.
Since it doesn't really need to care what it is that it is printing, use the
generic term value.
Fix or implement getSymbolValue to keep llvm-nm working.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205479 91177308-0d34-0410-b5e6-96231b3b80d8
and ContiguousBlobAccumulator classes. Pass ContiguousBlobAccumulator to
the handleSymtabSectionHeader function directly.
No functional changes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205431 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
The FileHeader mapping now accepts an optional Flags sequence that accepts
the EF_<arch>_<flag> constants. When not given, Flags defaults to zero.
Reviewers: atanasyan
Reviewed By: atanasyan
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D3213
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205173 91177308-0d34-0410-b5e6-96231b3b80d8
This is a bit of a stab in the dark, since I have zlib on my machine.
Just going to bounce it off the bots & see if it sticks.
Do we have some convention for negative REQUIRES: checks? Or do I just
need to add a feature like I've done here?
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205050 91177308-0d34-0410-b5e6-96231b3b80d8
1) When creating a .debug_* section and instead create a .zdebug_
section.
2) When creating a fragment in a .zdebug_* section, make it a compressed
fragment.
3) When computing the size of a compressed section, compress the data
and use the size of the compressed data.
4) Emit the compressed bytes.
Also, check that only if a section has a compressed fragment, then that
is the only fragment in the section.
Assert-fail if the fragment's data is modified after it is compressed.
Initial review on llvm-commits by Eric Christopher and Rafael Espindola.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204958 91177308-0d34-0410-b5e6-96231b3b80d8
We need .symtab_shndxr if and only if a symbol references a section with an
index >= 0xff00.
The old code was trying to figure out if the section was needed ahead of time,
making it a fairly dependent on the code actually writing the table. It was
also somewhat conservative and would create the section in cases where it was
not needed.
If I remember correctly, the old structure was there so that the sections were
created in the same order gas creates them. That was valuable when MC's support
for ELF was new and we tested with elf-dump.py.
This patch refactors the symbol table creation to another class and makes it
obvious that .symtab_shndxr is really only created when we are about to output
a reference to a section index >= 0xff00.
While here, also improve the tests to use macros. One file is one section
short of needing .symtab_shndxr, the second one has just the right number.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204769 91177308-0d34-0410-b5e6-96231b3b80d8
Implement debug_loc.dwo, as well as llvm-dwarfdump support for dumping
this section.
Outlined in the DWARF5 spec and http://gcc.gnu.org/wiki/DebugFission the
debug_loc.dwo section has more variation than the standard debug_loc,
allowing 3 different forms of entry (plus the end of list entry). GCC
seems to, and Clang certainly, only use one form, so I've just
implemented dumping support for that for now.
It wasn't immediately obvious that there was a good refactoring to share
the implementation of dumping support between debug_loc and
debug_loc.dwo, so they're separate for now - ideas welcome or I may come
back to it at some point.
As per a comment in the code, we could choose different forms that may
reduce the number of debug_addr entries we emit, but that will require
further study.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204697 91177308-0d34-0410-b5e6-96231b3b80d8
Previously we would print an error message on machines where the only VS
version we find is 2013, even though we successfully install the integration
files for it.
Also, we shouldn't have two END labels.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204629 91177308-0d34-0410-b5e6-96231b3b80d8
This isn't a format we'll want to write out in practice, but moving it
to the writer library simplifies llvm-profdata and isolates it from
further changes to the format.
This also allows us to update the tests to not rely on the text output
format.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204489 91177308-0d34-0410-b5e6-96231b3b80d8
This introduces the ProfileData library and updates llvm-profdata to
use this library for reading profiles. InstrProfReader is an abstract
base class that will be subclassed for both the raw instrprof data
from compiler-rt and the efficient instrprof format that will be used
for PGO.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204482 91177308-0d34-0410-b5e6-96231b3b80d8
obj2yaml would emit the NUL bytes padding the auxiliary file symbol
records. Trimming them looks nicer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204314 91177308-0d34-0410-b5e6-96231b3b80d8
The current state of affairs has auxiliary symbols described as a big
bag of bytes. This is less than satisfying, it detracts from the YAML
file as being human readable.
Instead, allow for symbols to optionally contain their auxiliary data.
This allows us to have a much higher level way of describing things like
weak symbols, function definitions and section definitions.
This depends on D3105.
Differential Revision: http://llvm-reviews.chandlerc.com/D3092
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204214 91177308-0d34-0410-b5e6-96231b3b80d8
Allow object files to be tagged with a version-min load command for iOS
or MacOSX.
Teach macho-dump to understand the version-min load commands for
testcases.
rdar://11337778
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204190 91177308-0d34-0410-b5e6-96231b3b80d8
Since our error_category is based on the std one, we should have the
same visibility for the constructor. This also allows us to avoid
using the _do_message implementation detail in our own categories.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203998 91177308-0d34-0410-b5e6-96231b3b80d8
Microsoft PE/COFF Spec clearly states that the field is of signed interger
type. However, in reality, it's unsigned. If cl.exe needs to create a large
number of sections for COMDAT sections, it will just create more than 32768
sections. Handling large section number as negative number is not correct.
I think this is a spec bug.
Differential Revision: http://llvm-reviews.chandlerc.com/D3088
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203986 91177308-0d34-0410-b5e6-96231b3b80d8
sys::fs::createUniqueFile returns an absolute path, so MakeSharedObject does
too and we don't need to add a './' prefix.
Patch by Jon McLachlan.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203931 91177308-0d34-0410-b5e6-96231b3b80d8
Chandler voiced some concern with checking this in without some
discussion first. Reverting for now.
This reverts r203703, r203704, r203708, and 203709.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203723 91177308-0d34-0410-b5e6-96231b3b80d8
This replaces the llvm-profdata tool with a version that uses the
recently introduced Profile library. The new tool has the ability to
generate and summarize profdata files as well as merging them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203704 91177308-0d34-0410-b5e6-96231b3b80d8
There's a bit of duplicated "magic" code in opt.cpp and Clang's CodeGen that
computes the inliner threshold from opt level and size opt level.
This patch moves the code to a function that lives alongside the inliner itself,
providing a convenient overload to the inliner creation.
A separate patch can be committed to Clang to use this once it's committed to
LLVM. Standalone tools that use the inlining pass can also avoid duplicating
this code and fearing it will go out of sync.
Note: this patch also restructures the conditinal logic of the computation to
be cleaner.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203669 91177308-0d34-0410-b5e6-96231b3b80d8
The official specifications state the name to be ARMNT (as per the Microsoft
Portable Executable and Common Object Format Specification v8.3).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203530 91177308-0d34-0410-b5e6-96231b3b80d8
it is available. Also make the move semantics sufficiently correct to
tolerate move-only passes, as the PassManagers *are* move-only passes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203391 91177308-0d34-0410-b5e6-96231b3b80d8
This requires a number of steps.
1) Move value_use_iterator into the Value class as an implementation
detail
2) Change it to actually be a *Use* iterator rather than a *User*
iterator.
3) Add an adaptor which is a User iterator that always looks through the
Use to the User.
4) Wrap these in Value::use_iterator and Value::user_iterator typedefs.
5) Add the range adaptors as Value::uses() and Value::users().
6) Update *all* of the callers to correctly distinguish between whether
they wanted a use_iterator (and to explicitly dig out the User when
needed), or a user_iterator which makes the Use itself totally
opaque.
Because #6 requires churning essentially everything that walked the
Use-Def chains, I went ahead and added all of the range adaptors and
switched them to range-based loops where appropriate. Also because the
renaming requires at least churning every line of code, it didn't make
any sense to split these up into multiple commits -- all of which would
touch all of the same lies of code.
The result is still not quite optimal. The Value::use_iterator is a nice
regular iterator, but Value::user_iterator is an iterator over User*s
rather than over the User objects themselves. As a consequence, it fits
a bit awkwardly into the range-based world and it has the weird
extra-dereferencing 'operator->' that so many of our iterators have.
I think this could be fixed by providing something which transforms
a range of T&s into a range of T*s, but that *can* be separated into
another patch, and it isn't yet 100% clear whether this is the right
move.
However, this change gets us most of the benefit and cleans up
a substantial amount of code around Use and User. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203364 91177308-0d34-0410-b5e6-96231b3b80d8
This is a preliminary setup change to support a renaming of Windows target
triples. Split the object file format information out of the environment into a
separate entity. Unfortunately, file format was previously treated as an
environment with an unknown OS. This is most obvious in the ARM subtarget where
the handling for macho on an arbitrary platform switches to AAPCS rather than
APCS (as per Apple's needs).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203160 91177308-0d34-0410-b5e6-96231b3b80d8
This compiles with no changes to clang/lld/lldb with MSVC and includes
overloads to various functions which are used by those projects and llvm
which have OwningPtr's as parameters. This should allow out of tree
projects some time to move. There are also no changes to libs/Target,
which should help out of tree targets have time to move, if necessary.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203083 91177308-0d34-0410-b5e6-96231b3b80d8
Unwind info contents were indented at the same level as function table
contents. That's a bit confusing because the unwind info is pointed by
function table. In other places we usually increment indentation depth
by one when dereferncing a pointer.
This patch also removes extraneous newlines between function tables.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202879 91177308-0d34-0410-b5e6-96231b3b80d8
PassInfo structures of the legacy pass manager. Also give it the Legacy
prefix as it is not a particularly widely used header.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202839 91177308-0d34-0410-b5e6-96231b3b80d8
directly care about the Value class (it is templated so that the key can
be any arbitrary Value subclass), it is in fact concretely tied to the
Value class through the ValueHandle's CallbackVH interface which relies
on the key type being some Value subclass to establish the value handle
chain.
Ironically, the unittest is already in the right library.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202824 91177308-0d34-0410-b5e6-96231b3b80d8
The original code does not work correctly on executable files because the
code is written in such a way that only object files are assumed to be given
to llvm-objdump.
Contents of RuntimeFunction are different between executables and objects. In
executables, fields in RuntimeFunction have actual addresses to unwind info
structures. On the other hand, in object files, the fields have zero value,
but instead there are relocations pointing to the fields, so that Linker will
fill them at link-time.
So, when we are reading an object file, we need to use relocation info to
find the location of unwind info. When executable, we should just look at the
values in RuntimeFunction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202785 91177308-0d34-0410-b5e6-96231b3b80d8
The shared library generated by autoconf will now be called
libLLVM-$(VERSION_MAJOR).$(VERSION_MINOR).$(VERSION_PATCH)$(VERSION_SUFFIX).so
and a symlink named
libLLVM-$(VERSION_MAJOR).$(VERSION_MINOR)$(VERSION_SUFFIX).so will
also be created in the install directory.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202720 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Previously llvm-config --system-libs would print something like:
$ llvm-config --system-libs
-lz -ltinfo -lrt -ldl -lm
Now we don't emit blank line. Functionality is unchanged otherwise, in
particular llvm-config --libs --system-libs still emits the LLVM libraries
and the system libraries on different lines.
Reviewers: chapuni
Reviewed By: chapuni
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2901
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202719 91177308-0d34-0410-b5e6-96231b3b80d8
This centralizes the Makefile handling of -install_name and -rpath. It also
moves the cmake build to using @rpath. The reason being that libclang needs it,
and it works for everything else.
A followup patch will move clang to using this and then there will be a single
point to edit to support other systems.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202499 91177308-0d34-0410-b5e6-96231b3b80d8
The current COFF unwind printer tries to print SEH handler function names,
assuming that it can always find function names in string table. It crashes
if file being read has no symbol table (i.e. executable).
With this patch, llvm-objdump prints SEH handler's RVA if there's no symbol
table entry for that RVA.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202466 91177308-0d34-0410-b5e6-96231b3b80d8
Eventually DataLayoutPass should go away, but for now that is the only easy
way to get a DataLayout in some APIs. This patch only changes the ones that
have easy access to a Module.
One interesting issue with sometimes using DataLayoutPass and sometimes
fetching it from the Module is that we have to make sure they are equivalent.
We can get most of the way there by always constructing the pass with a Module.
In fact, the pass could be changed to point to an external DataLayout instead
of owning one to make this stricter.
Unfortunately, the C api passes a DataLayout, so it has to be up to the caller
to make sure the pass and the module are in sync.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202204 91177308-0d34-0410-b5e6-96231b3b80d8
Now that DataLayout is not a pass, store one in Module.
Since the C API expects to be able to get a char* to the datalayout description,
we have to keep a std::string somewhere. This patch keeps it in Module and also
uses it to represent modules without a DataLayout.
Once DataLayout is mandatory, we should probably move the string to DataLayout
itself since it won't be necessary anymore to represent the special case of a
module without a DataLayout.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202190 91177308-0d34-0410-b5e6-96231b3b80d8
Instead, have a DataLayoutPass that holds one. This will allow parts of LLVM
don't don't handle passes to also use DataLayout.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202168 91177308-0d34-0410-b5e6-96231b3b80d8
boundaries.
It is possible to create an ELF executable where symbol from say .text
section 'points' to the address outside the section boundaries. It does
not have a sense to disassemble something outside the section.
Without this fix llvm-objdump prints finite or infinite (depends on
the executable file architecture) number of 'invalid instruction
encoding' warnings.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202083 91177308-0d34-0410-b5e6-96231b3b80d8
After this I will set the default back to F_None. The advantage is that
before this patch forgetting to set F_Binary would corrupt a file on windows.
Forgetting to set F_Text produces one that cannot be read in notepad, which
is a better failure mode :-)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202052 91177308-0d34-0410-b5e6-96231b3b80d8
The LLVMSupport library implementation consolidates all dependencies on
system libraries. Move the logic gathering system libraries out of
'cmake/modules/LLVM-Config.cmake' and into 'lib/Support/CMakeLists.txt'.
Use the target_link_libraries() command there to tell CMake about the
link dependencies of the LLVMSupport implementation. CMake will
automatically propagate this to all targets that link LLVMSupport
directly or indirectly.
We still need to build knowledge of system library dependencies into
'llvm-config'. Store the list of libraries needed in a property on
LLVMSupport and teach 'tools/llvm-config/CMakeLists.txt' to retrieve it
from there.
Drop all calls to 'link_system_libs' and 'get_system_libs' from our
CMake code. Replace their implementations with a warning that explains
the calls are no longer necessary. Also drop from 'LLVMConfig.cmake'
the HAVE_* and related variables that were published there only to allow
'get_system_libs' to run outside our build process.
Contributed by Brad King.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201969 91177308-0d34-0410-b5e6-96231b3b80d8
CodeGenPrepare uses extensively TargetLowering which is part of libLLVMCodeGen.
This is a layer violation which would introduce eventually a dependence on
CodeGen in ScalarOpts.
Move CodeGenPrepare into libLLVMCodeGen to avoid that.
Follow-up of <rdar://problem/15519855>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201912 91177308-0d34-0410-b5e6-96231b3b80d8
This interface allows IRObjectFile to be implemented without having dummy
methods for all section and segment related methods.
Both llvm-ar and llvm-nm are changed to use it. Unfortunately the mangler is
still not plugged in since it requires some refactoring to make a Module hold
a DataLayout.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201881 91177308-0d34-0410-b5e6-96231b3b80d8
This replaces the old NoIntegratedAssembler with at TargetOption. This is
more flexible and will be used to forward clang's -no-integrated-as option.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201836 91177308-0d34-0410-b5e6-96231b3b80d8
The SuppressWarnings flag, unfortunately, isn't very useful for custom tools
that want to use the LLVM module linker. So I'm changing it to a parameter of
the Linker, and the flag itself moves to the llvm-link tool.
For the time being as SuppressWarnings is pretty much the only "option" it
seems reasonable to propagate it to Linker objects. If we end up with more
options in the future, some sort of "struct collecting options" may be a
better idea.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201819 91177308-0d34-0410-b5e6-96231b3b80d8
SEH table addresses are VA in COFF file. In this patch we convert VA to RVA
before printing it, because dumpbin prints them as RVAs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201760 91177308-0d34-0410-b5e6-96231b3b80d8
The same code (~20 lines) for initializing a TargetOptions object from CodeGen
cmdline flags is duplicated 4 times in 4 different tools. This patch moves it
into a utility function.
Since the CodeGen/CommandFlags.h file defines cl::opt flags in a header, it's
a bit of a touchy situation because we should only link them into tools. So this
patch puts the init function in the header.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201699 91177308-0d34-0410-b5e6-96231b3b80d8
Load Configuration Table may contain a pointer to SEH table. This patch is to
print the offset to the table. Printing SEH table contents is a TODO.
The layout of Layout Configuration Table is described in Microsoft PE/COFF
Object File Format Spec, but the table's offset/size descriptions seems to be
totally wrong, at least in revision 8.3 of the spec. I believe the table in
this patch is the correct one.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201638 91177308-0d34-0410-b5e6-96231b3b80d8
In gcov, the -o flag can accept either a directory or a file name.
When given a directory, the gcda and gcno files are expected to be in
that directory. When given a file, the gcda and gcno files are
expected to be named based on the stem of that file. Non-existent
paths are treated as files.
This implements compatible behaviour.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201555 91177308-0d34-0410-b5e6-96231b3b80d8
Introducing llvm-profdata, a tool for merging profile data generated by
PGO instrumentation in clang.
- The name indicates a file extension of <name>.profdata. Eventually
profile data output by clang should be changed to that extension.
- llvm-profdata merges two profiles. However, the name is more general,
since it will likely pick up more tasks (such as summarizing a single
profile).
- llvm-profdata parses the current text-based format, but will be
updated once we settle on a binary format.
<rdar://problem/15949645>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201535 91177308-0d34-0410-b5e6-96231b3b80d8
It was pointing to lib\clang\3.4, but now we're on 3.5.
Make CMake insert the right version automatically.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201363 91177308-0d34-0410-b5e6-96231b3b80d8
These are self-contained in functionality so it makes sense to separate them,
as opt.cpp has grown quite big already.
Following Eric's suggestions, if this code is ever deemed useful outside of
tools/opt, it will make sense to move it to one of the LLVM libraries like IR.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201116 91177308-0d34-0410-b5e6-96231b3b80d8
This function adds an extra path argument to lto_module_create_from_memory.
The path argument will be passed to makeBuffer to make sure the MemoryBuffer
has a name and the created module has a module identifier.
This is mainly for emitting warning messages from the linker. When we emit
warning message on a module, we can use the module identifier.
rdar://15985737
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201114 91177308-0d34-0410-b5e6-96231b3b80d8
In some cases it is possible to have a personality 0 unwinding opcodes in the
extab (such as when .handlerdata is used in the assembly). Simply decode the 3
opcodes for that case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201030 91177308-0d34-0410-b5e6-96231b3b80d8
The primary motivation for this pass is to separate the call graph
analysis used by the new pass manager's CGSCC pass management from the
existing call graph analysis pass. That analysis pass is (somewhat
unfortunately) over-constrained by the existing CallGraphSCCPassManager
requirements. Those requirements make it *really* hard to cleanly layer
the needed functionality for the new pass manager on top of the existing
analysis.
However, there are also a bunch of things that the pass manager would
specifically benefit from doing differently from the existing call graph
analysis, and this new implementation tries to address several of them:
- Be lazy about scanning function definitions. The existing pass eagerly
scans the entire module to build the initial graph. This new pass is
significantly more lazy, and I plan to push this even further to
maximize locality during CGSCC walks.
- Don't use a single synthetic node to partition functions with an
indirect call from functions whose address is taken. This node creates
a huge choke-point which would preclude good parallelization across
the fanout of the SCC graph when we got to the point of looking at
such changes to LLVM.
- Use a memory dense and lightweight representation of the call graph
rather than value handles and tracking call instructions. This will
require explicit update calls instead of some updates working
transparently, but should end up being significantly more efficient.
The explicit update calls ended up being needed in many cases for the
existing call graph so we don't really lose anything.
- Doesn't explicitly model SCCs and thus doesn't provide an "identity"
for an SCC which is stable across updates. This is essential for the
new pass manager to work correctly.
- Only form the graph necessary for traversing all of the functions in
an SCC friendly order. This is a much simpler graph structure and
should be more memory dense. It does limit the ways in which it is
appropriate to use this analysis. I wish I had a better name than
"call graph". I've commented extensively this aspect.
This is still very much a WIP, in fact it is really just the initial
bits. But it is about the fourth version of the initial bits that I've
implemented with each of the others running into really frustrating
problms. This looks like it will actually work and I'd like to split the
actual complexity across commits for the sake of my reviewers. =] The
rest of the implementation along with lots of wiring will follow
somewhat more rapidly now that there is a good path forward.
Naturally, this doesn't impact any of the existing optimizer. This code
is specific to the new pass manager.
A bunch of thanks are deserved for the various folks that have helped
with the design of this, especially Nick Lewycky who actually sat with
me to go through the fundamentals of the final version here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200903 91177308-0d34-0410-b5e6-96231b3b80d8
necessary until we add analyses to the driver, but I have such an
analysis ready and wanted to split this out. This is actually exercised
by the existing tests of the new pass manager as the analysis managers
are cross-checked and validated by the function and module managers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200901 91177308-0d34-0410-b5e6-96231b3b80d8
It is not clear how much we should try to expose in getFlags. For example,
should there be a SF_Object and a SF_Text?
But for information that is already being exposed, we may as well use it in
llvm-nm.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200820 91177308-0d34-0410-b5e6-96231b3b80d8
No functional change. Updated loops from:
for (I = scc_begin(), E = scc_end(); I != E; ++I)
to:
for (I = scc_begin(); !I.isAtEnd(); ++I)
for teh win.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200789 91177308-0d34-0410-b5e6-96231b3b80d8
Until now, when a path in a gcno file included a directory, we would
emit our .gcov file in that directory, whereas gcov always emits the
file in the current directory. In doing so, this implements gcov's
strange name-mangling -p flag, which is needed to avoid clobbering
files when two with the same name exist in different directories.
The path mangling is a bit ugly and only handles unix-like paths, but
it's simple, and it doesn't make any guesses as to how it should
behave outside of what gcov documents. If we decide this should be
cross platform later, we can consider the compatibility implications
then.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200754 91177308-0d34-0410-b5e6-96231b3b80d8
When gcov is run without gcda data, it acts as if the counts are all
zero and labels the file as - to indicate that there was no data. We
should do the same.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200740 91177308-0d34-0410-b5e6-96231b3b80d8
COFF has only one symbol table.
MachO has a LC_DYSYMTAB, but that is not a symbol table, just extra info about
the one symbol table (LC_SYMTAB).
IR (coming soon) also has only one table.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200488 91177308-0d34-0410-b5e6-96231b3b80d8
utohexstr provides a temporary string, making it unsafe to use with the Twine
interface which will not copy the string. Switch to using std::string.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200457 91177308-0d34-0410-b5e6-96231b3b80d8
This is acceptted by clang and gcc, but MSVC seems to balk at it. As it is
unneeded, simply drop it. Fixes MSVC buildbots.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200456 91177308-0d34-0410-b5e6-96231b3b80d8
exp2 is not available on Windows. Fortunately, we are calculating powers of 2
with expontents within the range of [4,12]. Simply use an equivalent bitshift
operation to repair compilation with MSVC which does not provide this standard
function.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200454 91177308-0d34-0410-b5e6-96231b3b80d8
Enhance the ARM specific parsing support in llvm-readobj to support attributes.
This allows for simpler tests to validate encoding of the build attributes as
specified in the ARM ELF specification.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200450 91177308-0d34-0410-b5e6-96231b3b80d8
None of the object file formats reported error on iterator increment. In
retrospect, that is not too surprising: no object format stores symbols or
sections in a linked list or other structure that requires chasing pointers.
As a consequence, all error checking can be done on begin() and end().
This reduces the text segment of bin/llvm-readobj in my machine from 521233 to
518526 bytes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200442 91177308-0d34-0410-b5e6-96231b3b80d8
This is a bit imperfect, as these options don't show up in the help as
is and single dash variants are accepted, which differs from gcov.
Unfortunately, this seems to be as good as it gets with the cl::opt
machinery, so it'll do as an incremental step.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200419 91177308-0d34-0410-b5e6-96231b3b80d8
This Properly capitalizes and clarifies the help output from
llvm-cov. It also puts the llvm-only / non-gcov-compatible options in
their own category.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200418 91177308-0d34-0410-b5e6-96231b3b80d8
Currently, llvm-cov isn't command-line compatible with gcov, which
accepts a source file name as its first parameter and infers the gcno
and gcda file names from that. This change keeps our -gcda and -gcno
options available for convenience in overriding this behaviour, but
adds the required parameter and inference behaviour as a compatible
default.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200417 91177308-0d34-0410-b5e6-96231b3b80d8
It had grown fairly inconsistent. I am about to change it quite a bit to also
use the object api when handling IR files.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200374 91177308-0d34-0410-b5e6-96231b3b80d8
This will be better with c++11, but right now file_magic converts to bool,
which makes the api really easy to misuse.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200357 91177308-0d34-0410-b5e6-96231b3b80d8
editbin.exe and link.exe both accepts /highentropyva option to set this bit, so
doing s/VIRTUAL_ADDRESS/VA/ should make sense.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200191 91177308-0d34-0410-b5e6-96231b3b80d8
That bit is not documented in the PE/COFF spec published by Microsoft, so we
don't know the official name of it. I named this bit
IMAGE_DLL_CHARACTERISTICS_HIGH_ENTROPY_VIRTUAL_ADDRESS because the bit is
reported as "high entropy virtual address" by dumpbin.exe,
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200121 91177308-0d34-0410-b5e6-96231b3b80d8
PE32+ supports 64 bit address space, but the file format remains 32 bit.
So its file format is pretty similar to PE32 (32 bit executable). The
differences compared to PE32 are (1) the lack of "BaseOfData" field and
(2) some of its data members are 64 bit.
In this patch, I added a new member function to get a PE32+ Header object to
COFFObjectFile class and made llvm-readobj to use it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200117 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes a regression introduced by r182908, which broke
llvm-objdump's ability to display relocations inline in a disassembly
dump for ELF object files.
That change removed a SectionRelocMap from Object/ELF.h, which we
recreate in llvm-objdump.cpp.
I discovered this regression via an out-of-tree test
(test/NaCl/X86/pnacl-hides-sandbox-x86-64.ll) which used llvm-objdump.
Note that the "Unknown" string in the test output on i386 isn't quite
right, but this appears to be a pre-existing bug.
Differential Revision: http://llvm-reviews.chandlerc.com/D2559
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200090 91177308-0d34-0410-b5e6-96231b3b80d8
Sweep the codebase for common typos. Includes some changes to visible function
names that were misspelt.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200018 91177308-0d34-0410-b5e6-96231b3b80d8
This enables IO error reports in both the child and server processes.
The scheme still isn't entirely satisfactory and output is jumbled but it beats
having no output at all. This will hopefully unblock ARM support (PR18057).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200017 91177308-0d34-0410-b5e6-96231b3b80d8
The client and server now use a single unified low-level RPC core built around
LLVM's existing cross-platform abstractions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199947 91177308-0d34-0410-b5e6-96231b3b80d8
Eliminates the LLI_BUILDING_CHILD build hack from r199885.
Also add a FIXME to remove code that tricks the tests into passing when the
feature fails to work. Please don't do stuff like this, the tests exist for a
reason!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199929 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds the target analysis passes (usually TargetTransformInfo) to the
codgen pipeline. We also expose now the AddAnalysisPasses method through the C
API, because the optimizer passes would also benefit from better target-specific
cost models.
Reviewed by Andrew Kaylor
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199926 91177308-0d34-0410-b5e6-96231b3b80d8
Eliminate the copies LLVM's System mmap and cache invalidation code. These were
slowly drifting away from the original version, and moreover the copied code
was a dead end in terms of portability.
We now statically link to Support but in practice with stripping this adds next
to no weight to the resultant binary.
Also avoid installing lli-child-target to the user's $PATH. It's not meant to
be run directly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199881 91177308-0d34-0410-b5e6-96231b3b80d8
The execution code path crashes if it can't execute the binary so we might as
well take precautions here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199844 91177308-0d34-0410-b5e6-96231b3b80d8
identify_magic is not free, so we should avoid calling it twice. The argument
also makes it cheap for createBinary to just forward to createObjectFile.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199813 91177308-0d34-0410-b5e6-96231b3b80d8
The constructors of classes deriving from Binary normally take an error_code
as an argument to the constructor. My original intent was to change them
to have a trivial constructor and move the initial parsing logic to a static
method returning an ErrorOr. I changed my mind because:
* A constructor with an error_code out parameter is extremely convenient from
the implementation side. We can incrementally construct the object and give
up when we find an error.
* It is very efficient when constructing on the stack or when there is no
error. The only inefficient case is where heap allocating and an error is
found (we have to free the memory).
The result is that this is a much smaller patch. It just standardizes the
create* helpers to return an ErrorOr.
Almost no functionality change: The only difference is that this found that
we were trying to read past the end of COFF import library but ignoring the
error.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199770 91177308-0d34-0410-b5e6-96231b3b80d8
Add support to llvm-readobj to decode the actual opcodes. The ARM EHABI opcodes
are a variable length instruction set that describe the operations required for
properly unwinding stack frames.
The primary motivation for this change is to ease the creation of tests for the
ARM EHABI object emission as well as the unwinding directive handling in the ARM
IAS.
Thanks to Logan Chien for an extra test case!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199708 91177308-0d34-0410-b5e6-96231b3b80d8
various opt verifier commandline options.
Mostly mechanical wiring of the verifier to the new pass manager.
Exercises one of the more unusual aspects of it -- a pass can be either
a module or function pass interchangably. If this is ever problematic,
we can make things more constrained, but for things like the verifier
where there is an "obvious" applicability at both levels, it seems
convenient.
This is the next-to-last piece of basic functionality left to make the
opt commandline driving of the new pass manager minimally functional for
testing and further development. There is still a lot to be done there
(notably the factoring into .def files to kill the current boilerplate
code) but it is relatively uninteresting. The only interesting bit left
for minimal functionality is supporting the registration of analyses.
I'm planning on doing that on top of the .def file switch mostly because
the boilerplate for the analyses would be significantly worse.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199646 91177308-0d34-0410-b5e6-96231b3b80d8
This makes the 'verifyFunction' and 'verifyModule' functions totally
independent operations on the LLVM IR. It also cleans up their API a bit
by lifting the abort behavior into their clients and just using an
optional raw_ostream parameter to control printing.
The implementation of the verifier is now just an InstVisitor with no
multiple inheritance. It also is significantly more const-correct, and
hides the const violations internally. The two layers that force us to
break const correctness are building a DomTree and dispatching through
the InstVisitor.
A new VerifierPass is used to implement the legacy pass manager
interface in terms of the other pieces.
The error messages produced may be slightly different now, and we may
have slightly different short circuiting behavior with different usage
models of the verifier, but generally everything works equivalently and
this unblocks wiring the verifier up to the new pass manager.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199569 91177308-0d34-0410-b5e6-96231b3b80d8
When registering a pass, a pass can now specify a second construct that takes as
argument a pointer to TargetMachine.
The PassInfo class has been updated to reflect that possibility.
If such a constructor exists opt will use it instead of the default constructor
when instantiating the pass.
Since such IR passes are supposed to be rare, no specific support has been
added to this commit to allow an easy registration of such a pass.
In other words, for such pass, the initialization function has to be
hand-written (see CodeGenPrepare for instance).
Now, codegenprepare can be tested using opt:
opt -codegenprepare -mtriple=mytriple input.ll
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199430 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds the capability to dump export table contents. An example
output is this:
Export Table:
Ordinal RVA Name
5 0x2008 exportfn1
6 0x2010 exportfn2
By adding this feature to llvm-objdump, we will be able to use it to check
export table contents in LLD's tests. Currently we are doing binary
comparison in the tests, which is fragile and not readable to humans.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199358 91177308-0d34-0410-b5e6-96231b3b80d8
If a binary does not depend on any DLL, it does not contain import table at
all. Printing the section title without contents looks wrong, so we shouldn't
print it in that case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199340 91177308-0d34-0410-b5e6-96231b3b80d8
Add a hook in the C API of LTO so that clients of the code generator can set
their own handler for the LLVM diagnostics.
The handler is defined like this:
typedef void (*lto_diagnostic_handler_t)(lto_codegen_diagnostic_severity_t
severity, const char *diag, void *ctxt)
- severity says how bad this is.
- diag is a string that contains the diagnostic message.
- ctxt is the registered context for this handler.
This hook is more general than the lto_get_error_message, since this function
keeps only the latest message and can only be queried when something went wrong
(no warning for instance).
<rdar://problem/15517596>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199338 91177308-0d34-0410-b5e6-96231b3b80d8
I did write a version returning ErrorOr<OwningPtr<Binary> >, but it is too
cumbersome to use without std::move. I will keep the patch locally and submit
when we switch to c++11.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199326 91177308-0d34-0410-b5e6-96231b3b80d8
MCJIT remote execution (ChildTarget+RemoteTargetExternal) protocol was in
dire need of refactoring. It was fail-prone, had no error reporting and
implemented the same message logic on every single function.
This patch rectifies it, and makes it work on ARM, where it was randomly
failing. Other architectures shall profit from this change as well, making
their buildbots and releases more reliable.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199261 91177308-0d34-0410-b5e6-96231b3b80d8
Reapply r199191, reverted in r199197 because it carelessly broke
Other/link-opts.ll. The problem was that calling
createInternalizePass("main") would select
createInternalizePass(bool("main")) instead of
createInternalizePass(ArrayRef<const char *>("main")). This commit
fixes the bug.
The original commit message follows.
Add API to LTOCodeGenerator to specify a strategy for the -internalize
pass.
This is a new attempt at Bill's change in r185882, which he reverted in
r188029 due to problems with the gold linker. This puts the onus on the
linker to decide whether (and what) to internalize.
In particular, running internalize before outputting an object file may
change a 'weak' symbol into an internal one, even though that symbol
could be needed by an external object file --- e.g., with arclite.
This patch enables three strategies:
- LTO_INTERNALIZE_FULL: the default (and the old behaviour).
- LTO_INTERNALIZE_NONE: skip -internalize.
- LTO_INTERNALIZE_HIDDEN: only -internalize symbols with hidden
visibility.
LTO_INTERNALIZE_FULL should be used when linking an executable.
Outputting an object file (e.g., via ld -r) is more complicated, and
depends on whether hidden symbols should be internalized. E.g., for
ld -r, LTO_INTERNALIZE_NONE can be used when -keep_private_externs, and
LTO_INTERNALIZE_HIDDEN can be used otherwise. However,
LTO_INTERNALIZE_FULL is inappropriate, since the output object file will
eventually need to link with others.
lto_codegen_set_internalize_strategy() sets the strategy for subsequent
calls to lto_codegen_write_merged_modules() and lto_codegen_compile*().
<rdar://problem/14334895>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199244 91177308-0d34-0410-b5e6-96231b3b80d8
Newer unix systems have 32 bit uid and gid types, but the archive format was
not updated. Fortunately, these fields are not normally used. Just truncate
the data to fit in 6 chars.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199223 91177308-0d34-0410-b5e6-96231b3b80d8
Add API to LTOCodeGenerator to specify a strategy for the -internalize
pass.
This is a new attempt at Bill's change in r185882, which he reverted in
r188029 due to problems with the gold linker. This puts the onus on the
linker to decide whether (and what) to internalize.
In particular, running internalize before outputting an object file may
change a 'weak' symbol into an internal one, even though that symbol
could be needed by an external object file --- e.g., with arclite.
This patch enables three strategies:
- LTO_INTERNALIZE_FULL: the default (and the old behaviour).
- LTO_INTERNALIZE_NONE: skip -internalize.
- LTO_INTERNALIZE_HIDDEN: only -internalize symbols with hidden
visibility.
LTO_INTERNALIZE_FULL should be used when linking an executable.
Outputting an object file (e.g., via ld -r) is more complicated, and
depends on whether hidden symbols should be internalized. E.g., for
ld -r, LTO_INTERNALIZE_NONE can be used when -keep_private_externs, and
LTO_INTERNALIZE_HIDDEN can be used otherwise. However,
LTO_INTERNALIZE_FULL is inappropriate, since the output object file will
eventually need to link with others.
lto_codegen_set_internalize_strategy() sets the strategy for subsequent
calls to lto_codegen_write_merged_modules() and lto_codegen_compile*().
<rdar://problem/14334895>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199191 91177308-0d34-0410-b5e6-96231b3b80d8
can be used by both the new pass manager and the old.
This removes it from any of the virtual mess of the pass interfaces and
lets it derive cleanly from the DominatorTreeBase<> template. In turn,
tons of boilerplate interface can be nuked and it turns into a very
straightforward extension of the base DominatorTree interface.
The old analysis pass is now a simple wrapper. The names and style of
this split should match the split between CallGraph and
CallGraphWrapperPass. All of the users of DominatorTree have been
updated to match using many of the same tricks as with CallGraph. The
goal is that the common type remains the resulting DominatorTree rather
than the pass. This will make subsequent work toward the new pass
manager significantly easier.
Also in numerous places things became cleaner because I switched from
re-running the pass (!!! mid way through some other passes run!!!) to
directly recomputing the domtree.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199104 91177308-0d34-0410-b5e6-96231b3b80d8
directory. These passes are already defined in the IR library, and it
doesn't make any sense to have the headers in Analysis.
Long term, I think there is going to be a much better way to divide
these matters. The dominators code should be fully separated into the
abstract graph algorithm and have that put in Support where it becomes
obvious that evn Clang's CFGBlock's can use it. Then the verifier can
manually construct dominance information from the Support-driven
interface while the Analysis library can provide a pass which both
caches, reconstructs, and supports a nice update API.
But those are very long term, and so I don't want to leave the really
confusing structure until that day arrives.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199082 91177308-0d34-0410-b5e6-96231b3b80d8
This moves the old pass creation functionality to its own header and
updates the callers of that routine. Then it adds a new PM supporting
bitcode writer to the header file, and wires that up in the opt tool.
A test is added that round-trips code into bitcode and back out using
the new pass manager.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199078 91177308-0d34-0410-b5e6-96231b3b80d8
that through the interface rather than a simple bool. This should allow
starting to wire up real output to round-trip IR through opt with the
new pass manager.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199071 91177308-0d34-0410-b5e6-96231b3b80d8
This implements the legacy passes in terms of the new ones. It adds
basic testing using explicit runs of the passes. Next up will be wiring
the basic output mechanism of opt up when the new pass manager is
engaged unless bitcode writing is requested.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199049 91177308-0d34-0410-b5e6-96231b3b80d8
Nothing was using the ability of the pass to delete the raw_ostream it
printed to, and nothing was trying to pass it a pointer to the
raw_ostream. Also, the function variant had a different order of
arguments from all of the others which was just really confusing. Now
the interface accepts a reference, doesn't offer to delete it, and uses
a consistent order. The implementation of the printing passes haven't
been updated with this simplification, this is just the API switch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199044 91177308-0d34-0410-b5e6-96231b3b80d8
name to match the source file which I got earlier. Update the include
sites. Also modernize the comments in the header to use the more
recommended doxygen style.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199041 91177308-0d34-0410-b5e6-96231b3b80d8
nests to the opt commandline support. This also showcases the
implicit-initial-manager support which will be most useful for testing.
There are several bugs that I spotted by inspection here that I'll fix
with test cases in subsequent commits.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199038 91177308-0d34-0410-b5e6-96231b3b80d8
mode that can be used to debug the execution of everything.
No support for analyses here, that will come later. This already helps
show parts of the opt commandline integration that isn't working. Tests
of that will start using it as the bugs are fixed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199004 91177308-0d34-0410-b5e6-96231b3b80d8
manager. I cannot emphasize enough that this is a WIP. =] I expect it
to change a great deal as things stabilize, but I think its really
important to get *some* functionality here so that the infrastructure
can be tested more traditionally from the commandline.
The current design is looking something like this:
./bin/opt -passes='module(pass_a,pass_b,function(pass_c,pass_d))'
So rather than custom-parsed flags, there is a single flag with a string
argument that is parsed into the pass pipeline structure. This makes it
really easy to have nice structural properties that are very explicit.
There is one obvious and important shortcut. You can start off the
pipeline with a pass, and the minimal context of pass managers will be
built around the entire specified pipeline. This makes the common case
for tests super easy:
./bin/opt -passes=instcombine,sroa,gvn
But this won't introduce any of the complexity of the fully inferred old
system -- we only ever do this for the *entire* argument, and we only
look at the first pass. If the other passes don't fit in the pass
manager selected it is a hard error.
The other interesting aspect here is that I'm not relying on any
registration facilities. Such facilities may be unavoidable for
supporting plugins, but I have alternative ideas for plugins that I'd
like to try first. My plan is essentially to build everything without
registration until we hit an absolute requirement.
Instead of registration of pass names, there will be a library dedicated
to parsing pass names and the pass pipeline strings described above.
Currently, this is directly embedded into opt for simplicity as it is
very early, but I plan to eventually pull this into a library that opt,
bugpoint, and even Clang can depend on. It should end up as a good home
for things like the existing PassManagerBuilder as well.
There are a bunch of FIXMEs in the code for the parts of this that are
just stubbed out to make the patch more incremental. A quick list of
what's coming up directly after this:
- Support for function passes and building the structured nesting.
- Support for printing the pass structure, and FileCheck tests of all of
this code.
- The .def-file based pass name parsing.
- IR priting passes and the corresponding tests.
Some obvious things that I'm not going to do right now, but am
definitely planning on as the pass manager work gets a bit further:
- Pull the parsing into library, including the builders.
- Thread the rest of the target stuff into the new pass manager.
- Wire support for the new pass manager up to llc.
- Plugin support.
Some things that I'd like to have, but are significantly lower on my
priority list. I'll get to these eventually, but they may also be places
where others want to contribute:
- Adding nice error reporting for broken pass pipeline descriptions.
- Typo-correction for pass names.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198998 91177308-0d34-0410-b5e6-96231b3b80d8