ARM32 ELF R_ARM_V4BX relocation format is a special relocation type
that records the location of an ARMv4t BX instruction to enable a
static linker to generate ARMv4 compatible instructions. This
relocation does not contain a reference symbol.
This patch enabled its creation by removing the requeriment of a
relocation symbol target in ELFState<ELFT>::writeSectionContent.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235513 91177308-0d34-0410-b5e6-96231b3b80d8
MIPS64 ELF file has a very specific relocation record format. Each
record might specify up to three relocation operations. So the `r_info`
field in fact consists of three relocation type sub-fields and optional
code of "special" symbols.
http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf
page 40
The patch implements support of the MIPS64 relocation record format in
yaml2obj/obj2yaml tools by introducing new optional Relocation fields:
Type2, Type3, and SpecSym. These fields are recognized only if the
object/YAML file relates to the MIPS64 target.
Differential Revision: http://reviews.llvm.org/D7136
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227044 91177308-0d34-0410-b5e6-96231b3b80d8
Having two ways to do this doesn't seem terribly helpful and
consistently using the insert version (which we already has) seems like
it'll make the code easier to understand to anyone working with standard
data structures. (I also updated many references to the Entry's
key and value to use first() and second instead of getKey{Data,Length,}
and get/setValue - for similar consistency)
Also removes the GetOrCreateValue functions so there's less surface area
to StringMap to fix/improve/change/accommodate move semantics, etc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222319 91177308-0d34-0410-b5e6-96231b3b80d8
The ELF symbol `st_other` field might contain additional flags besides
visibility ones. This patch implements support for some MIPS specific
flags.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221491 91177308-0d34-0410-b5e6-96231b3b80d8
Now that we have a lib/MC/MCAnalysis, the dependency was there just because
of two helper classes. Move the two over to MC.
This will allow IRObjectFile to parse inline assembly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212248 91177308-0d34-0410-b5e6-96231b3b80d8
Input YAML file might contain multiple object file definitions.
New option `-docnum` allows to specify an ordinal number (starting from 1)
of definition used for an object file generation.
Patch reviewed by Sean Silva.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209967 91177308-0d34-0410-b5e6-96231b3b80d8
Now the only method to configure ELF section's content and size is to assign
a hexadecimal string to the `Content` field. Unfortunately this way is
completely useless when you need to declare a really large section.
To solve this problem this patch adds one more optional field `Size`
to the `RawContentSection` structure. When yaml2obj generates an ELF file
it uses the following algorithm:
1. If both `Content` and `Size` fields are missed create an empty section.
2. If only `Content` field is missed take section length from the `Size`
field and fill the section by zero.
3. If only `Size` field is missed create a section using data from
the `Content` field.
4. If both `Content` and `Size` fields are provided validate that the `Size`
value is not less than size of `Content` data. Than take section length
from the `Size`, fill beginning of the section by `Content` and the rest
by zero.
Examples
--------
* Create a section 0x10000 bytes long filled by zero
Name: .data
Type: SHT_PROGBITS
Flags: [ SHF_ALLOC ]
Size: 0x10000
* Create a section 0x10000 bytes long starting from 'CA' 'FE' 'BA' 'BE'
Name: .data
Type: SHT_PROGBITS
Flags: [ SHF_ALLOC ]
Content: CAFEBABE
Size: 0x10000
The patch reviewed by Michael Spencer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208995 91177308-0d34-0410-b5e6-96231b3b80d8
We already do this for shstrtab, so might as well do it for strtab. This
extracts the string table building code into a separate class. The idea
is to use it for other object formats too.
I mostly wanted to do this for the general principle, but it does save a
little bit on object file size. I tried this on a clang bootstrap and
saved 0.54% on the sum of object file sizes (1.14 MB out of 212 MB for
a release build).
Differential Revision: http://reviews.llvm.org/D3533
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207670 91177308-0d34-0410-b5e6-96231b3b80d8
The patch implements support for both relocation record formats: Elf_Rel
and Elf_Rela. It is possible to define relocation against symbol only.
Relocations against sections will be implemented later. Now yaml2obj
recognizes X86_64, MIPS and Hexagon relocation types.
Example of relocation section specification:
Sections:
- Name: .text
Type: SHT_PROGBITS
Content: "0000000000000000"
AddressAlign: 16
Flags: [SHF_ALLOC]
- Name: .rel.text
Type: SHT_REL
Info: .text
AddressAlign: 4
Relocations:
- Offset: 0x1
Symbol: glob1
Type: R_MIPS_32
- Offset: 0x2
Symbol: glob2
Type: R_MIPS_CALL16
The patch reviewed by Michael Spencer, Sean Silva, Shankar Easwaran.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206017 91177308-0d34-0410-b5e6-96231b3b80d8
and ContiguousBlobAccumulator classes. Pass ContiguousBlobAccumulator to
the handleSymtabSectionHeader function directly.
No functional changes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205431 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
The FileHeader mapping now accepts an optional Flags sequence that accepts
the EF_<arch>_<flag> constants. When not given, Flags defaults to zero.
Reviewers: atanasyan
Reviewed By: atanasyan
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D3213
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205173 91177308-0d34-0410-b5e6-96231b3b80d8
* std::string::append(int, int) can be ambiguous.
* std::vector<>::data() is a C++11 feature, use ArrayRef abstraction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@192542 91177308-0d34-0410-b5e6-96231b3b80d8
* ELFTypes.h contains template magic for defining types based on endianess, size, and alignment.
* ELFFile.h defines the ELFFile class which provides low level ELF specific access.
* ELFObjectFile.h contains ELFObjectFile which uses ELFFile to implement the ObjectFile interface.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188022 91177308-0d34-0410-b5e6-96231b3b80d8
Although in reality the symbol table in ELF resides in a section, the
standard requires that there be no more than one SHT_SYMTAB. To enforce
this constraint, it is cleaner to group all the symbols under a
top-level `Symbols` key on the object file.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184627 91177308-0d34-0410-b5e6-96231b3b80d8
The improperly aligned section content in the output was causing
buildbot failures. This should fix them.
Incidentally, this results in a simpler and more robust API for
ContiguousBlobAccumulator.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184621 91177308-0d34-0410-b5e6-96231b3b80d8
Previously we unconditionally enforced that section references in
symbols in the YAML had a name that was a section name present in the
object, and linked the references to that section. Now, permit empty
section names (already the default, if the `Section` key is not
provided) to indicate SHN_UNDEF.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184513 91177308-0d34-0410-b5e6-96231b3b80d8
Instead, just have 3 sub-lists, one for each of
{STB_LOCAL,STB_GLOBAL,STB_WEAK}.
This allows us to be a lot more explicit w.r.t. the symbol ordering in
the object file, because if we allowed explicitly setting the STB_*
`Binding` key for the symbol, then we might have ended up having to
shuffle STB_LOCAL symbols to the front of the list, which is likely to
cause confusion and potential for error.
Also, this new approach is simpler ;)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184506 91177308-0d34-0410-b5e6-96231b3b80d8
After this patch, the ELF file produced by
`yaml2obj-elf-symbol-basic.yaml`, when linked and executed on x86_64
(under SysV ABI, obviously; I tested on Linux), produces a working
executable that goes into an infinite loop!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184469 91177308-0d34-0410-b5e6-96231b3b80d8
One of the key things that the YAML format abstracts over is the use of
section numbers for referencing sections. Instead, textual section names
are used, which yaml2obj then translates into appropriate section
numbers. (Technically ELF doesn't care about section names (only section
numbers), but since this is a testing tool, readability counts).
This simplifies using section names as symbolic references in various
parts of the code. An upcoming commit will use this to allow symbols to
reference sections.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184467 91177308-0d34-0410-b5e6-96231b3b80d8
Previously, we would monkeypatch the vector of YAML::Section's in order
to ensure that the SHT_NULL entry is present. Now we just add it
unconditionally.
The proliferation of small numerical adjustments is beginning to
frighten me, but I can't think of a way having a single point of truth
for them without introducing a whole new layer of data structures (i.e.
lots of code and complexity) between the YAML and binary ELF formats.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184260 91177308-0d34-0410-b5e6-96231b3b80d8
This will be needed later for holding symbol names, due to the libObject
issue mentioned in the commit message of r184161.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184242 91177308-0d34-0410-b5e6-96231b3b80d8