This patch adds a "-verify" mode to the llvm-rtdyld utility. In verify mode,
llvm-rtdyld will test supplied expressions against the linked program images
that it creates in memory. This scheme can be used to verify the correctness
of the relocation logic applied by RuntimeDyld.
The expressions to test will be read out of files passed via the -check option
(there may be more than one of these). Expressions to check are extracted from
lines of the form:
# rtdyld-check: <expression>
This system is designed to fit the llvm-lit regression test workflow. It is
format and target agnostic, and supports verification of images linked for
remote targets. The expression language is defined in
llvm/include/llvm/RuntimeDyldChecker.h . Examples can be found in
test/ExecutionEngine/RuntimeDyld.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211956 91177308-0d34-0410-b5e6-96231b3b80d8
Current PPC64 RuntimeDyld code to handle TOC relocations has two
problems:
- With recent linkers, in addition to the relocations that implicitly
refer to the TOC base (R_PPC64_TOC*), you can now also use the .TOC.
magic symbol with any other relocation to refer to the TOC base
explicitly. This isn't currently used much in ELFv1 code (although
it could be), but it is essential in ELFv2 code.
- In a complex JIT environment with multiple modules, each module may
have its own .toc section, and TOC relocations in one module must
refer to *its own* TOC section. The current findPPC64TOC implementation
does not correctly implement this; in fact, it will always return the
address of the first TOC section it finds anywhere. (Note that at the
time findPPC64TOC is called, we don't even *know* which module the
relocation originally resided in, so it is not even possible to fix
this routine as-is.)
This commit fixes both problems by handling TOC relocations earlier, in
processRelocationRef. To do this, I've removed the findPPC64TOC routine
and replaced it by a new routine findPPC64TOCSection, which works
analogously to findOPDEntrySection in scanning the sections of the
ObjImage provided by its caller, processRelocationRef. This solves the
issue of finding the correct TOC section associated with the current
module.
This makes it straightforward to implement both R_PPC64_TOC relocations,
and relocations explicitly refering to the .TOC. symbol, directly in
processRelocationRef. There is now a new problem in implementing the
R_PPC64_TOC16* relocations, because those can now in theory involve
*three* different sections: the relocation may be applied in section A,
refer explicitly to a symbol in section B, and refer implicitly to the
TOC section C. The final processing of the relocation thus may only
happen after all three of these sections have been assigned final
addresses. There is currently no obvious means to implement this in
its general form with the common-code RuntimeDyld infrastructure.
Fortunately, ppc64 code usually makes no use of this most general form;
in fact, TOC16 relocations are only ever generated by LLVM for symbols
residing themselves in the TOC, which means "section B" == "section C"
in the above terminology. This special case can easily be handled with
the current infrastructure, and that is what this patch does.
[ Unhandled cases result in an explicit error, unlike the current code
which silently returns the wrong TOC base address ... ]
This patch makes the JIT work on both BE and LE (ELFv2 requires
additional patches, of course), and allowed me to successfully run
complex JIT scenarios (via mesa/llvmpipe).
Reviewed by Hal Finkel.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211885 91177308-0d34-0410-b5e6-96231b3b80d8
This makes the buffer ownership on error conditions very natural. The buffer
is only moved out of the argument if an object is constructed that now
owns the buffer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211546 91177308-0d34-0410-b5e6-96231b3b80d8
When RuntimeDyldELF creates stub functions, it needs to install
relocations that will resolve to the final address of the target
routine. Since those are 16-bit relocs, they need to be applied to the
least-significant halfword of the instruction. On big-endian ppc64,
this means that addresses have to be adjusted by 2, which is what the
code currently does.
However, on a little-endian system, the address must *not* be adjusted;
the least-significant halfword is the first one. This patch updates the
RuntimeDyldELF code to take the target byte order into account.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211384 91177308-0d34-0410-b5e6-96231b3b80d8
This adds support for several missing PPC64 relocations in the
straight-forward manner to RuntimeDyldELF.cpp.
Note that this actually fixes a failure of a large-model test case on
PowerPC, allowing the XFAIL to be removed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211382 91177308-0d34-0410-b5e6-96231b3b80d8
This is a minimal change to remove the header. I will remove the occurrences
of "using std::error_code" in a followup patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210803 91177308-0d34-0410-b5e6-96231b3b80d8
This commit starts with a "git mv ARM64 AArch64" and continues out
from there, renaming the C++ classes, intrinsics, and other
target-local objects for consistency.
"ARM64" test directories are also moved, and tests that began their
life in ARM64 use an arm64 triple, those from AArch64 use an aarch64
triple. Both should be equivalent though.
This finishes the AArch64 merge, and everyone should feel free to
continue committing as normal now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209577 91177308-0d34-0410-b5e6-96231b3b80d8
We do all of our address arithmetic in 64-bit, and operations involving
logically negative 32-bit offsets (actually represented as unsigned 64 bit ints)
often overflow into higher bits. The overflow check could be preserved by
casting to uint32 at the callsite for applyRelocationValue, but this would
eliminate the value of the check.
The right way to handle overflow in relocations is to make relocation processing
target specific, and compute the values for RelocationEntry objects in the
appropriate types (32-bit for 32-bit targets, 64-bit for 64-bit targets). This
is coming as part of the cleanup I'm working on.
This fixes another i386 regression test.
<rdar://problem/16889891>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209536 91177308-0d34-0410-b5e6-96231b3b80d8
i386.
This fixes two more MCJIT regression tests on i386:
ExecutionEngine/MCJIT/2003-05-06-LivenessClobber.ll
ExecutionEngine/MCJIT/2013-04-04-RelocAddend.ll
The implementation of processScatteredVANILLA is tasteless (*ba-dum-ching*),
but I'm working on a substantial tidy-up of RuntimeDyldMachO that should
improve things.
This patch also fixes a type-o in RuntimeDyldMachO::processSECTDIFFRelocation,
and teaches that method to skip over the PAIR reloc following the SECTDIFF.
<rdar://problem/16961886>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209478 91177308-0d34-0410-b5e6-96231b3b80d8
For GOT relocations the addend should modify the offset to the
GOT entry, not the value of the entry itself. Teach RuntimeDyldMachO
to do The Right Thing here.
Fixes <rdar://problem/16961886>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209154 91177308-0d34-0410-b5e6-96231b3b80d8
SECTDIFF relocations on 32-bit x86.
This fixes several of the MCJIT regression test failures that show up on 32-bit
builds.
<rdar://problem/16886294>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208635 91177308-0d34-0410-b5e6-96231b3b80d8
around RelocationEntries, rather than passing the same information via loose
arguments.
No functional change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208375 91177308-0d34-0410-b5e6-96231b3b80d8
relocation entries it applies.
Prior to this patch, RuntimeDyldImpl::resolveExternalSymbols discarded
relocations for external symbols once they had been applied. This causes issues
if the client calls MCJIT::finalizeLoadedModules more than once, and updates the
location of any symbols in between (e.g. by calling MCJIT::mapSectionAddress).
No test case yet: None of our in-tree memory managers support moving sections
around. I'll have to hack up a dummy memory manager before I can write a unit
test.
Fixes <rdar://problem/16764378>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208257 91177308-0d34-0410-b5e6-96231b3b80d8
A bunch of switch cases were missing, not just for ARM64 but also for
AArch64_BE. I've fixed all those, but there's zero testing as
ExecutionEngine tests are disabled when crosscompiling and I don't
have a native platform available to test on.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207626 91177308-0d34-0410-b5e6-96231b3b80d8
MSVC 2013 provides std::make_unique, which it finds with ADL when one of
the parameters is std::unique_ptr, leading to an ambiguous overload.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207597 91177308-0d34-0410-b5e6-96231b3b80d8
This starts in MCJIT::getSymbolAddress where the
unique_ptr<object::Binary> is release()d and (after a cast) passed to a
single caller, MCJIT::addObjectFile.
addObjectFile calls RuntimeDyld::loadObject.
RuntimeDld::loadObject calls RuntimeDyldELF::createObjectFromFile
And the pointer is never owned at this point. I say this point, because
the alternative codepath, RuntimeDyldMachO::createObjectFile certainly
does take ownership, so this seemed like a good hint that this was a/the
right place to take ownership.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207580 91177308-0d34-0410-b5e6-96231b3b80d8
definition below all the header #include lines. This updates most of the
miscellaneous other lib/... directories. A few left though.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206845 91177308-0d34-0410-b5e6-96231b3b80d8
We normally don't drop functions from the C API's, but in this case I think we
can:
* The old implementation of getFileOffset was fairly broken
* The introduction of LLVMGetSymbolFileOffset was itself a C api breaking
change as it removed LLVMGetSymbolOffset.
* It is an incredibly specialized use case. The only reason MCJIT needs it is
because of its odd position of being a dynamic linker of .o files.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206750 91177308-0d34-0410-b5e6-96231b3b80d8
This adds a second implementation of the AArch64 architecture to LLVM,
accessible in parallel via the "arm64" triple. The plan over the
coming weeks & months is to merge the two into a single backend,
during which time thorough code review should naturally occur.
Everything will be easier with the target in-tree though, hence this
commit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205090 91177308-0d34-0410-b5e6-96231b3b80d8
Some targets require more than one relocation entry to perform a relocation.
This change allows processRelocationRef to process more than one relocation
entry at a time by passing the relocation iterator itself instead of just
the relocation entry.
Related to <rdar://problem/16199095>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204439 91177308-0d34-0410-b5e6-96231b3b80d8
RTDyldMemoryManager, regardless of whether it thinks they're "required for
execution".
Currently, RuntimeDyld only passes sections that are "required for execution"
to the RTDyldMemoryManager, and takes "required for execution" to mean exactly
"contains symbols or relocations". There are two problems with this:
(1) It can drop sections with anonymous data that is referenced by code.
(2) It leaves the JIT client no way to inspect interesting sections that aren't
actually required to run the program (e.g dwarf sections).
A test case is still in the works.
Future work: We may want to replace this with a generic section filtering
mechanism, but that will require more consideration. For now, this flag at least
allows clients to volunteer to do the filtering themselves.
Fixes <rdar://problem/15177691>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204398 91177308-0d34-0410-b5e6-96231b3b80d8
When resolving a function call to an external routine, the dynamic
loader must patch the "nop" after the branch instruction to a load
that restores the TOC register.
Current code does that, but only with the *first* instance of a call
to any particular external routine, i.e. at the point where it also
allocates the call stub. With subsequent calls to the same routine,
current code neglects to patch in the TOC restore code. This is a
bug, and leads to corrupt TOC pointers in those cases.
Fixed by patching in restore code every time.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203580 91177308-0d34-0410-b5e6-96231b3b80d8
relevant subclasses of RuntimeDyldImpl. This allows construction of
RuntimeDyldImpl instances to be deferred until after the target architecture is
known.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203352 91177308-0d34-0410-b5e6-96231b3b80d8