This is dead code since PIC16 was removed in 2010. The result was an odd mix,
where some parts would carefully pass it along and others would assert it was
zero (most of the object streamer for example).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185436 91177308-0d34-0410-b5e6-96231b3b80d8
The compiler occasionally generates multiple .loc directives in a row
(at the same instruction address). These need to be transformed into
multple actual .debug_line table entries, since they are used to signal
certain information to the debugger (e.g. if the opening brace of a
function body is on the same line as the declaration).
The MCAsmStreamer version of EmitDwarfLocDirective handles this
correctly by emitting a .loc directive every time it is called.
However, the MCObjectStream version simply defaults to recording
the information and emitting only a single table entry later,
e.g. when EmitInstruction is called.
This patch introduces a MCAsmStreamer::EmitDwarfLocDirective
version that emits a line table entry for a .loc directive
that may already be pending before recording the new directive.
(This is similar to how this is handled in GNU as.)
With this patch (and the code alignment factor patch) applied,
I'm now getting identical DWARF .debug sections for all test-suite
object files on PowerPC for the internal and the external assembler.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184357 91177308-0d34-0410-b5e6-96231b3b80d8
isa<> and dyn_cast<>. In several places, code is already hacking around
the absence of this, and there seem to be several interfaces that might
be lifted and/or devirtualized using this.
This change was based on a discussion with Jim Grosbach about how best
to handle testing for specific MCStreamer subclasses. He said that this
was the correct end state, and everything else was too hacky so
I decided to just make it so.
No functionality should be changed here, this is just threading the kind
through all the constructors and setting up the classof overloads.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174113 91177308-0d34-0410-b5e6-96231b3b80d8
Mips16 is really a processor decoding mode (ala thumb 1) and in the same
program, mips16 and mips32 functions can exist and can call each other.
If a jal type instruction encounters an address with the lower bit set, then
the processor switches to mips16 mode (if it is not already in it). If the
lower bit is not set, then it switches to mips32 mode.
The linker knows which functions are mips16 and which are mips32.
When relocation is performed on code labels, this lower order bit is
set if the code label is a mips16 code label.
In general this works just fine, however when creating exception handling
tables and dwarf, there are cases where you don't want this lower order
bit added in.
This has been traditionally distinguished in gas assembly source by using a
different syntax for the label.
lab1: ; this will cause the lower order bit to be added
lab2=. ; this will not cause the lower order bit to be added
In some cases, it does not matter because in dwarf and debug tables
the difference of two labels is used and in that case the lower order
bits subtract each other out.
To fix this, I have added to mcstreamer the notion of a debuglabel.
The default is for label and debug label to be the same. So calling
EmitLabel and EmitDebugLabel produce the same result.
For various reasons, there is only one set of labels that needs to be
modified for the mips exceptions to work. These are the "$eh_func_beginXXX"
labels.
Mips overrides the debug label suffix from ":" to "=." .
This initial patch fixes exceptions. More changes most likely
will be needed to DwarfCFException to make all of this work
for actual debugging. These changes will be to emit debug labels in some
places where a simple label is emitted now.
Some historical discussion on this from gcc can be found at:
http://gcc.gnu.org/ml/gcc-patches/2008-08/msg00623.htmlhttp://gcc.gnu.org/ml/gcc-patches/2008-11/msg01273.html
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170279 91177308-0d34-0410-b5e6-96231b3b80d8
Reduces runtime of i386-large-relocations.s by 10x in Release builds, even more
in Debug+Asserts builds.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164945 91177308-0d34-0410-b5e6-96231b3b80d8
within the codegen EK_GPRel64BlockAddress. This was not
supported for direct object output and resulted in an assertion.
This change adds support for EK_GPRel64BlockAddress for
direct object.
One fallout from this is to turn on rela relocations
for mips64 to match gas.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162334 91177308-0d34-0410-b5e6-96231b3b80d8
file error checking. Use that to error on an unfinished cfi_startproc.
The error is not nice, but is already better than a segmentation fault.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147717 91177308-0d34-0410-b5e6-96231b3b80d8
TargetAsmInfo, which in turn pulls in TargetRegisterInfo, etc. :-( There are
other cases of violations, but this is probably the worst.
This patch is but one small step towards fixing this. 500 more steps to go. :-(
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@135131 91177308-0d34-0410-b5e6-96231b3b80d8
for all symbol differences and can drop the old EmitPCRelSymbolValue
method.
This also make getExprForFDESymbol on ELF equal to the one on MachO, and it
can be made non-virtual.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@130634 91177308-0d34-0410-b5e6-96231b3b80d8
actuall addresses in a .o file, so it is better to let the MachO writer compute
it.
This is good for two reasons. First, areas that shouldn't care about
addresses now don't have access to it. Second, the layout of each section
is independent. I should use this in a subsequent commit to speed it up.
Most of the patch is just removing the section address computation. The two
interesting parts are the change on how we handle padding in the end
of sections and how MachO can get the address of a-b when a and b are in
different sections.
Since now the expression evaluation normally doesn't know the section address,
it will think that a-b needs relocation and let the MachO writer know. Once
it has computed the section addresses, it calls back the expression evaluation
with the section addresses to resolve these expressions.
The remaining problem is the handling of padding. Currently it will create
a special alignment fragment at the end. Since that fragment doesn't update
the alignment of the section, it needs the real address to be computed.
Since now the layout will not compute a-b with a and b in different sections,
the only effect that the special alignment fragment has is update the
address size of the section. This can also be done by the MachO writer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@121076 91177308-0d34-0410-b5e6-96231b3b80d8
foo = a - b
.long foo
instead of just
.long a - b
First, on darwin9 64 bits the assembler produces the wrong result. Second,
if "a" is the end of the section all darwin assemblers (9, 10 and mc) will not
consider a - b to be a constant but will if the dummy foo is created.
Split how we handle these cases. The first one is something MC should take care
of. The second one has to be handled by the caller.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@120889 91177308-0d34-0410-b5e6-96231b3b80d8