On 64-bit targets, Function has 4-bytes of padding in its struct layout.
This uses the space for the intrinsic ID. It is set and recalculated whenever the function name is set. This is similar to the current behavior which clears the function from the intrinsic ID cache when its renamed.
The intrinsic cache itself is removed as the only purpose was to speedup calls to getIntrinsicID() which now just reading the new field in the struct.
Reviewed by Duncan. http://reviews.llvm.org/D9836
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237642 91177308-0d34-0410-b5e6-96231b3b80d8
Gather and Scatter are new introduced intrinsics, comming after recently implemented masked load and store.
This is the first patch for Gather and Scatter intrinsics. It includes only the syntax, parsing and verification.
Gather and Scatter intrinsics allow to perform multiple memory accesses (read/write) in one vector instruction.
The intrinsics are not target specific and will have the following syntax:
Gather:
declare <16 x i32> @llvm.masked.gather.v16i32(<16 x i32*> <vector of ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x i32> <passthru>)
declare <8 x float> @llvm.masked.gather.v8f32(<8 x float*><vector of ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float><passthru>)
Scatter:
declare void @llvm.masked.scatter.v8i32(<8 x i32><vector value to be stored> , <8 x i32*><vector of ptrs> , i32 <alignment>, <8 x i1> <mask>)
declare void @llvm.masked.scatter.v16i32(<16 x i32> <vector value to be stored> , <16 x i32*> <vector of ptrs>, i32 <alignment>, <16 x i1><mask> )
Vector of ptrs - a set of source/destination addresses, to load/store the value.
Mask - switches on/off vector lanes to prevent memory access for switched-off lanes
vector of ptrs, value and mask should have the same vector width.
These are code examples where gather / scatter should be used and will allow function vectorization
;void foo1(int * restrict A, int * restrict B, int * restrict C) {
; for (int i=0; i<SIZE; i++) {
; A[i] = B[C[i]];
; }
;}
;void foo3(int * restrict A, int * restrict B) {
; for (int i=0; i<SIZE; i++) {
; A[B[i]] = i+5;
; }
;}
Tests will come in the following patches, with CodeGen and Vectorizer.
http://reviews.llvm.org/D7433
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228521 91177308-0d34-0410-b5e6-96231b3b80d8
Specifically, gc.result benefits from this greatly. Instead of:
gc.result.int.*
gc.result.float.*
gc.result.ptr.*
...
We now have a gc.result.* that can specialize to literally any type.
Differential Revision: http://reviews.llvm.org/D7020
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226857 91177308-0d34-0410-b5e6-96231b3b80d8
I'm recommiting the codegen part of the patch.
The vectorizer part will be send to review again.
Masked Vector Load and Store Intrinsics.
Introduced new target-independent intrinsics in order to support masked vector loads and stores. The loop vectorizer optimizes loops containing conditional memory accesses by generating these intrinsics for existing targets AVX2 and AVX-512. The vectorizer asks the target about availability of masked vector loads and stores.
Added SDNodes for masked operations and lowering patterns for X86 code generator.
Examples:
<16 x i32> @llvm.masked.load.v16i32(i8* %addr, <16 x i32> %passthru, i32 4 /* align */, <16 x i1> %mask)
declare void @llvm.masked.store.v8f64(i8* %addr, <8 x double> %value, i32 4, <8 x i1> %mask)
Scalarizer for other targets (not AVX2/AVX-512) will be done in a separate patch.
http://reviews.llvm.org/D6191
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223348 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r222632 (and follow-up r222636), which caused a host
of LNT failures on an internal bot. I'll respond to the commit on the
list with a reproduction of one of the failures.
Conflicts:
lib/Target/X86/X86TargetTransformInfo.cpp
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222936 91177308-0d34-0410-b5e6-96231b3b80d8
Introduced new target-independent intrinsics in order to support masked vector loads and stores. The loop vectorizer optimizes loops containing conditional memory accesses by generating these intrinsics for existing targets AVX2 and AVX-512. The vectorizer asks the target about availability of masked vector loads and stores.
Added SDNodes for masked operations and lowering patterns for X86 code generator.
Examples:
<16 x i32> @llvm.masked.load.v16i32(i8* %addr, <16 x i32> %passthru, i32 4 /* align */, <16 x i1> %mask)
declare void @llvm.masked.store.v8f64(i8* %addr, <8 x double> %value, i32 4, <8 x i1> %mask)
Scalarizer for other targets (not AVX2/AVX-512) will be done in a separate patch.
http://reviews.llvm.org/D6191
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222632 91177308-0d34-0410-b5e6-96231b3b80d8
Add MSBuiltin which is similar in vein to GCCBuiltin. This allows for adding
intrinsics for Microsoft compatibility to individual instructions. This is
needed to permit the creation of ARM specific MSVC extensions.
This is not currently in use, and requires an associated change in clang to
enable use of the intrinsics defined by this new class. This merely sets the
LLVM portion of the infrastructure in place to permit the use of this
functionality. A separate set of changes will enable the new intrinsics.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212350 91177308-0d34-0410-b5e6-96231b3b80d8
This is like the LLVMMatchType, except the verifier checks that the
second argument is a vector with the same base type and half the
number of elements.
This will be used by the ARM64 backend.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205079 91177308-0d34-0410-b5e6-96231b3b80d8
These are used in the ARM backends to aid type-checking on patterns involving
intrinsics. By making sure one argument is an extended/truncated version of
another.
However, there's no reason to limit them to just vectors types. For example
AArch64 has the instruction "uqshrn sD, dN, #imm" which would naturally use an
intrinsic taking an i64 and returning an i32.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205003 91177308-0d34-0410-b5e6-96231b3b80d8
code that includes Intrinsics.gen directly.
This never showed up in my testing because the old Intrinsics.gen was
still kicking around in the make build system and was correct there. =[
Thankfully, some of the bots to clean rebuilds and that caught this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171373 91177308-0d34-0410-b5e6-96231b3b80d8
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.
There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.
The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.
I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).
I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171366 91177308-0d34-0410-b5e6-96231b3b80d8