work and how to replace them into individual values. Also, when trying to
replace an aggregrate that is used by load or store with a single (large)
integer, don't crash (but don't replace the aggregrate either).
Also adds a testcase for both structs and arrays.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@51997 91177308-0d34-0410-b5e6-96231b3b80d8
are the same as in unpacked structs, only field
positions differ. This only matters for structs
containing x86 long double or an apint; it may
cause backwards compatibility problems if someone
has bitcode containing a packed struct with a
field of one of those types.
The issue is that only 10 bytes are needed to
hold an x86 long double: the store size is 10
bytes, but the ABI size is 12 or 16 bytes (linux/
darwin) which comes from rounding the store size
up by the alignment. Because it seemed silly not
to pack an x86 long double into 10 bytes in a
packed struct, this is what was done. I now
think this was a mistake. Reserving the ABI size
for an x86 long double field even in a packed
struct makes things more uniform: the ABI size is
now always used when reserving space for a type.
This means that developers are less likely to
make mistakes. It also makes life easier for the
CBE which otherwise could not represent all LLVM
packed structs (PR2402).
Front-end people might need to adjust the way
they create LLVM structs - see following change
to llvm-gcc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@51928 91177308-0d34-0410-b5e6-96231b3b80d8
issue is operand promotion for setcc/select... but looks like the fundamental
stuff is implemented for CellSPU.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@51884 91177308-0d34-0410-b5e6-96231b3b80d8
and insertvalue and extractvalue instructions.
First-class array values are not trivial because C doesn't
support them. The approach I took here is to wrap all arrays
in structs. Feedback is welcome.
The 2007-01-15-NamedArrayType.ll test needed to be modified
because it has a "not grep" for a string that now exists,
because array types now have associated struct types, and
those struct types have names.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@51881 91177308-0d34-0410-b5e6-96231b3b80d8
in DAGISelEmitter output. This bug was recently uncovered by the
addition of patterns for CALL32m and CALL64m, which are nodes
that now have both MemOperands and variadic_ops.
This bug was especially visible with PIC in various configurations,
because the new patterns are matching the indirect call code used
in many PIC configurations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@51877 91177308-0d34-0410-b5e6-96231b3b80d8
is longer than the second one) should stop after finding one. Added break
instruction guarantees it. It also changes difference between offsets to
absolute value of this difference in the condition.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@51875 91177308-0d34-0410-b5e6-96231b3b80d8
the conditions for performing the transform when only the
function declaration is available: no longer allow turning
i32 into i64 for example. Only allow changing between
pointer types, and between pointer types and integers of
the same size. For return values ptr -> intptr was already
allowed; I added ptr -> ptr and intptr -> ptr while there.
As shown by a recent objc testcase, changing the way
parameters/return values are passed can be fatal when calling
code written in assembler that directly manipulates call
arguments and return values unless the transform has no
impact on the way they are passed at the codegen level.
While it is possible to imagine an ABI that treats integers
of pointer size differently to pointers, I don't think LLVM
supports any so the transform should now be safe while still
being useful.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@51834 91177308-0d34-0410-b5e6-96231b3b80d8
we did not truncate the value down to i1 with (x&1). This caused a problem
when the computation of x was nontrivial, for example, "add i1 1, 1" would
return 2 instead of 0.
This makes the testcase compile into:
...
llvm_cbe_t = (((llvm_cbe_r == 0u) + (llvm_cbe_r == 0u))&1);
llvm_cbe_u = (((unsigned int )(bool )llvm_cbe_t));
...
instead of:
...
llvm_cbe_t = ((llvm_cbe_r == 0u) + (llvm_cbe_r == 0u));
llvm_cbe_u = (((unsigned int )(bool )llvm_cbe_t));
...
This fixes a miscompilation of mediabench/adpcm/rawdaudio/rawdaudio and
403.gcc with the CBE, regressions from LLVM 2.2. Tanya, please pull
this into the release branch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@51813 91177308-0d34-0410-b5e6-96231b3b80d8
insertvalue and extractvalue to use constant indices instead of
Value* indices. And begin updating LangRef.html.
There's definately more to come here, but I'm checking this
basic support in now to make it available to people who are
interested.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@51806 91177308-0d34-0410-b5e6-96231b3b80d8
cases due to an isel deficiency already noted in
lib/Target/X86/README.txt, but they can be matched in this fold-call.ll
testcase, for example.
This is interesting mainly because it exposes a tricky tblgen bug;
tblgen was incorrectly computing the starting index for variable_ops
in the case of a complex pattern.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@51706 91177308-0d34-0410-b5e6-96231b3b80d8
the one case that ADCE catches that normal DCE doesn't: non-induction variable
loop computations.
This implementation handles this problem without using postdominators.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@51668 91177308-0d34-0410-b5e6-96231b3b80d8