The test added in r211762 was sloppy, the correct initializer wasn't
added to @llvm.global_ctors
Spotted by Pasi Parviainen!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211879 91177308-0d34-0410-b5e6-96231b3b80d8
If both instructions to be replaced are marked invariant the resulting
instruction is invariant.
rdar://13358910
Fix by Erik Eckstein!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211801 91177308-0d34-0410-b5e6-96231b3b80d8
Folding a reference to a thread_local variable into another global
variable's initializer is very problematic, there is no relocation that
exists to represent such an access.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211762 91177308-0d34-0410-b5e6-96231b3b80d8
This is a follow-up to r211331, which failed to notice that we were
returning early from ValidLookupTableConstant for GEPs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211753 91177308-0d34-0410-b5e6-96231b3b80d8
[LLVM part]
These patches rename the loop unrolling and loop vectorizer metadata
such that they have a common 'llvm.loop.' prefix. Metadata name
changes:
llvm.vectorizer.* => llvm.loop.vectorizer.*
llvm.loopunroll.* => llvm.loop.unroll.*
This was a suggestion from an earlier review
(http://reviews.llvm.org/D4090) which added the loop unrolling
metadata.
Patch by Mark Heffernan.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211710 91177308-0d34-0410-b5e6-96231b3b80d8
Fixes exponential compilation complexity in PR19835, caused by
LICM::sink not handling the following pattern well:
f = op g
e = op f, g
d = op e
c = op d, e
b = op c
a = op b, c
When an instruction with N uses is sunk, each of its operands gets N
new uses (all of them - phi nodes). In the example above, if a had 1
use, c would have 2, e would have 4, and g would have 8.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211673 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This new debug emission kind supports emitting line location
information in all instructions, but stops code generation
from emitting debug info to the final output.
This mode is useful when the backend wants to track source
locations during code generation, but it does not want to
produce debug info. This is currently used by optimization
remarks (-pass-remarks, -pass-remarks-missed and
-pass-remarks-analysis).
To prevent debug info emission, DIBuilder never inserts the
annotation 'llvm.dbg.cu' when LocTrackingOnly is enabled.
Reviewers: echristo, dblaikie
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D4234
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211609 91177308-0d34-0410-b5e6-96231b3b80d8
The induction variables start value needs to be defined before we branch
(overflow check) to the scalar preheader where we used it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211460 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Different range metadata can lead to different optimizations in later
passes, possibly breaking the semantics of the merged function. So range
metadata must be taken into consideration when comparing Load
instructions.
Thanks!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211391 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds support to recognize patterns such as fadd,fsub,fadd,fsub.../add,sub,add,sub... and
vectorizes them as vector shuffles if they are profitable.
These patterns of vector shuffle can later be converted to instructions such as addsubpd etc on X86.
Thanks to Arnold and Hal for the reviews. http://reviews.llvm.org/D4015
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211339 91177308-0d34-0410-b5e6-96231b3b80d8
We would previously put dllimport variables in switch lookup tables, which
doesn't work because the address cannot be used in a constant initializer.
This is basically the same problem that we have in PR19955.
Putting TLS variables in switch tables also desn't work, because the
address of such a variable is not constant.
Differential Revision: http://reviews.llvm.org/D4220
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211331 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
With this patch, range metadata can be added to call/invoke including
IntrinsicInst. Previously, it could only be added to load.
Rename computeKnownBitsLoad to computeKnownBitsFromRangeMetadata because
range metadata is not only used by load.
Update the language reference to reflect this change.
Test Plan:
Add several tests in range-2.ll to confirm the verifier is happy with
having range metadata on call/invoke.
Add two tests in AddOverFlow.ll to confirm annotating range metadata to
call/invoke can benefit InstCombine.
Reviewers: meheff, nlewycky, reames, hfinkel, eliben
Reviewed By: eliben
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D4187
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211281 91177308-0d34-0410-b5e6-96231b3b80d8
* Find factorization opportunities using identity values.
* Find factorization opportunities by treating shl(X, C) as mul (X, shl(C))
* Keep NSW flag while simplifying instruction using factorization.
This fixes PR19263.
Differential Revision: http://reviews.llvm.org/D3799
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211261 91177308-0d34-0410-b5e6-96231b3b80d8
InstCombineMulDivRem has:
// Canonicalize (X+C1)*CI -> X*CI+C1*CI.
InstCombineAddSub has:
// W*X + Y*Z --> W * (X+Z) iff W == Y
These two transforms could fight with each other if C1*CI would not fold
away to something simpler than a ConstantExpr mul.
The InstCombineMulDivRem transform only acted on ConstantInts until
r199602 when it was changed to operate on all Constants in order to
let it fire on ConstantVectors.
To fix this, make this transform more careful by checking to see if we
actually folded away C1*CI.
This fixes PR20079.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211258 91177308-0d34-0410-b5e6-96231b3b80d8
These will be used for custom lowering and for library
implementations of various math functions, so it's useful
to expose these as builtins.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211247 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
As a starting step, we only use one simple heuristic: if the sign bits
of both a and b are zero, we can prove "add a, b" do not unsigned
overflow, and thus convert it to "add nuw a, b".
Updated all affected tests and added two new tests (@zero_sign_bit and
@zero_sign_bit2) in AddOverflow.ll
Test Plan: make check-all
Reviewers: eliben, rafael, meheff, chandlerc
Reviewed By: chandlerc
Subscribers: chandlerc, llvm-commits
Differential Revision: http://reviews.llvm.org/D4144
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211084 91177308-0d34-0410-b5e6-96231b3b80d8
r199771 accidently broke the logic that makes sure that SROA only splits
load on byte boundaries. If such a split happens, some bits get lost
when reassembling loads of wider types, causing data corruption.
Move the width check up to reject such splits early, avoiding the
corruption. Fixes PR19250.
Patch by: Björn Steinbrink <bsteinbr@gmail.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211082 91177308-0d34-0410-b5e6-96231b3b80d8
[This is resubmitting r210721, which was reverted due to suspected breakage
which turned out to be unrelated].
Some extra review comments were addressed. See D4090 and D4147 for more details.
The Clang change that produces this metadata was committed in r210667
Patch by Mark Heffernan.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211076 91177308-0d34-0410-b5e6-96231b3b80d8
When LowerSwitch transforms a switch instruction into a tree of ifs it
is actually performing a binary search into the various case ranges, to
see if the current value falls into one cases range of values.
So, if we have a program with something like this:
switch (a) {
case 0:
do0();
break;
case 1:
do1();
break;
case 2:
do2();
break;
default:
break;
}
the code produced is something like this:
if (a < 1) {
if (a == 0) {
do0();
}
} else {
if (a < 2) {
if (a == 1) {
do1();
}
} else {
if (a == 2) {
do2();
}
}
}
This code is inefficient because the check (a == 1) to execute do1() is
not needed.
The reason is that because we already checked that (a >= 1) initially by
checking that also (a < 2) we basically already inferred that (a == 1)
without the need of an extra basic block spawned to check if actually (a
== 1).
The patch addresses this problem by keeping track of already
checked bounds in the LowerSwitch algorithm, so that when the time
arrives to produce a Leaf Block that checks the equality with the case
value / range the algorithm can decide if that block is really needed
depending on the already checked bounds .
For example, the above with "a = 1" would work like this:
the bounds start as LB: NONE , UB: NONE
as (a < 1) is emitted the bounds for the else path become LB: 1 UB:
NONE. This happens because by failing the test (a < 1) we know that the
value "a" cannot be smaller than 1 if we enter the else branch.
After the emitting the check (a < 2) the bounds in the if branch become
LB: 1 UB: 1. This is because by checking that "a" is smaller than 2 then
the upper bound becomes 2 - 1 = 1.
When it is time to emit the leaf block for "case 1:" we notice that 1
can be squeezed exactly in between the LB and UB, which means that if we
arrived to that block there is no need to emit a block that checks if (a
== 1).
Patch by: Marcello Maggioni <hayarms@gmail.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211038 91177308-0d34-0410-b5e6-96231b3b80d8
As a follow-up to r210375 which canonicalizes addrspacecast
instructions, this patch canonicalizes addrspacecast constant
expressions.
Given clang uses ConstantExpr::getAddrSpaceCast to emit addrspacecast
cosntant expressions, this patch is also a step towards having the
frontend emit canonicalized addrspacecasts.
Piggyback a minor refactor in InstCombineCasts.cpp
Update three affected tests in addrspacecast-alias.ll,
access-non-generic.ll and constant-fold-gep.ll and added one new test in
constant-fold-address-space-pointer.ll
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211004 91177308-0d34-0410-b5e6-96231b3b80d8
This patch is to move GlobalMerge pass from Transform/Scalar
to CodeGen, because GlobalMerge depends on TargetMachine.
In the mean time, the macro INITIALIZE_TM_PASS is also moved
to CodeGen/Passes.h. With this fix we can avoid making
libScalarOpts depend on libCodeGen.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210951 91177308-0d34-0410-b5e6-96231b3b80d8
This also simplifies the IR we create slightly: instead of working out
where success & failure should go manually, it turns out we can just
always jump to a success/failure block created for the purpose. Later
phases will sort out the mess without much difficulty.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210917 91177308-0d34-0410-b5e6-96231b3b80d8
This has two benefits: it makes the result more suitable for direct
insertaion into the struct to emulate the new cmpxchg, and it means
the name we give the instruction matches its actual effect better.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210916 91177308-0d34-0410-b5e6-96231b3b80d8
This commit adds a weak variant of the cmpxchg operation, as described
in C++11. A cmpxchg instruction with this modifier is permitted to
fail to store, even if the comparison indicated it should.
As a result, cmpxchg instructions must return a flag indicating
success in addition to their original iN value loaded. Thus, for
uniformity *all* cmpxchg instructions now return "{ iN, i1 }". The
second flag is 1 when the store succeeded.
At the DAG level, a new ATOMIC_CMP_SWAP_WITH_SUCCESS node has been
added as the natural representation for the new cmpxchg instructions.
It is a strong cmpxchg.
By default this gets Expanded to the existing ATOMIC_CMP_SWAP during
Legalization, so existing backends should see no change in behaviour.
If they wish to deal with the enhanced node instead, they can call
setOperationAction on it. Beware: as a node with 2 results, it cannot
be selected from TableGen.
Currently, no use is made of the extra information provided in this
patch. Test updates are almost entirely adapting the input IR to the
new scheme.
Summary for out of tree users:
------------------------------
+ Legacy Bitcode files are upgraded during read.
+ Legacy assembly IR files will be invalid.
+ Front-ends must adapt to different type for "cmpxchg".
+ Backends should be unaffected by default.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210903 91177308-0d34-0410-b5e6-96231b3b80d8
Enable value forwarding for loads from `calloc()` without an intervening
store.
This change extends GVN to handle the following case:
%1 = tail call noalias i8* @calloc(i64 1, i64 4)
%2 = bitcast i8* %1 to i32*
; This load is trivially constant zero
%3 = load i32* %2, align 4
This is analogous to the handling for `malloc()` in the same places.
`malloc()` returns `undef`; `calloc()` returns a zero value. Note that
it is correct to return zero even for out of bounds GEPs since the
result of such a GEP would be undefined.
Patch by Philip Reames!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210828 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is to improve global merge pass and support global symbol merge.
The global symbol merge is not enabled by default. For aarch64, we need some
more back-end fix to make it really benifit ADRP CSE.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210640 91177308-0d34-0410-b5e6-96231b3b80d8
This improves the X86 cost model for small constants with large types. Before
this commit we would even hoist trivial constants such as i96 2.
This is related to <rdar://problem/17070936>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210504 91177308-0d34-0410-b5e6-96231b3b80d8