This makes it possible to move between SmallVectors of different sizes.
Thanks to Dave Blaikie and Duncan Smith for patch feedback.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226899 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds a check for underflow when truncating results back to lower
precision at the end of an FMA. The additional sign handling logic in
APFloat::fusedMultiplyAdd should only be performed when the result of the
addition step of the FMA (in full precision) is exactly zero, not when the
result underflows to zero.
Unit tests for this case and related signed zero FMA results are included.
Fixes <rdar://problem/18925551>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225123 91177308-0d34-0410-b5e6-96231b3b80d8
This appears to have broken at least the windows build bots due to
compile errors in the predicate that didn't simply supress the overload.
I'm not sure what the fix is, and the bots have been broken for a long
time now so I'm just reverting until Michael can figure out a fix.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225064 91177308-0d34-0410-b5e6-96231b3b80d8
If the template specialization for externally managed sets in
PostOrderIterator call too far out of sync with each other, this unit
test will fail to build. This is especially useful for developers who
may not build Clang (the only in-tree user) every time.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222447 91177308-0d34-0410-b5e6-96231b3b80d8
As detailed at http://llvm.org/PR20728, due to an internal overflow in
APFloat::multiplySignificand the APFloat::fusedMultiplyAdd method can return
incorrect results for x87DoubleExtended (x86_fp80) values. This commonly
manifests as incorrect constant folding of libm fmal calls on x86. E.g.
fmal(1.0L, 1.0L, 3.0L) == 0.0L (should be 4.0L)
This patch fixes PR20728 by adding an extra bit to the significand for
intermediate results of APFloat::multiplySignificand, avoiding the overflow.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222374 91177308-0d34-0410-b5e6-96231b3b80d8
Having two ways to do this doesn't seem terribly helpful and
consistently using the insert version (which we already has) seems like
it'll make the code easier to understand to anyone working with standard
data structures. (I also updated many references to the Entry's
key and value to use first() and second instead of getKey{Data,Length,}
and get/setValue - for similar consistency)
Also removes the GetOrCreateValue functions so there's less surface area
to StringMap to fix/improve/change/accommodate move semantics, etc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222319 91177308-0d34-0410-b5e6-96231b3b80d8
A subtle bug was found where attempting to copy a non-const function_ref
lvalue would actually invoke the generic forwarding constructor (as it
was a closer match - being T& rather than the const T& of the implicit
copy constructor). In the particular case this lead to a dangling
function_ref member (since it had referenced the function_ref passed by
value to its ctor, rather than the outer function_ref that was still
alive)
SFINAE the converting constructor to not be considered if the copy
constructor is available and demonstrate that this causes the copy to
refer to the original functor, not to the function_ref it was copied
from. (without the code change, the test would fail as Y would be
referencing X and Y() would see the result of the mutation to X, ie: 2)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221753 91177308-0d34-0410-b5e6-96231b3b80d8
These just delegate to the underlying vector type in the MapVector.
Also just add in some sanity unittests.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220687 91177308-0d34-0410-b5e6-96231b3b80d8
This operation is analogous to its counterpart in DenseMap: It allows lookup
via cheap-to-construct keys (provided that getHashValue and isEqual are
implemented for the cheap key-type in the DenseMapInfo specialization).
Thanks to Chandler for the review.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220168 91177308-0d34-0410-b5e6-96231b3b80d8
to what we actually want ilogb implementation. This makes everything
*much* easier to deal with and is actually what we want when using it
anyways.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219474 91177308-0d34-0410-b5e6-96231b3b80d8
code using it more readable.
Also add a copySign static function that works more like the standard
function by accepting the value and sign-carying value as arguments.
No interesting logic here, but tests added to cover the basic API
additions and make sure they do something plausible.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219453 91177308-0d34-0410-b5e6-96231b3b80d8
This can be used for in-place initialization of non-moveable types.
For compilers that don't support variadic templates, only up to four
arguments are supported. We can always add more, of course, but this
should be good enough until we move to a later MSVC that has full
support for variadic templates.
Inspired by std::experimental::optional from the "Library Fundamentals" C++ TS.
Reviewed by David Blaikie.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218732 91177308-0d34-0410-b5e6-96231b3b80d8
This takes a single argument convertible to T, and
- if the Optional has a value, returns the existing value,
- otherwise, constructs a T from the argument and returns that.
Inspired by std::experimental::optional from the "Library Fundamentals" C++ TS.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218618 91177308-0d34-0410-b5e6-96231b3b80d8
It's not clear what the semantics of a self-move should be. The
consensus appears to be that a self-move should leave the object in a
moved-from state, which is what our existing move assignment operator
does.
However, the MSVC 2013 STL will perform self-moves in some cases. In
particular, when doing a std::stable_sort of an already sorted APSInt
vector of an appropriate size, one of the merge steps will self-move
half of the elements.
We don't notice this when building with MSVC, because MSVC will not
synthesize the move assignment operator for APSInt. Presumably MSVC
does this because APInt, the base class, has user-declared special
members that implicitly delete move special members. Instead, MSVC
selects the copy-assign operator, which defends against self-assignment.
Clang, on the other hand, selects the move-assign operator, and we get
garbage APInts.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215478 91177308-0d34-0410-b5e6-96231b3b80d8
Remove the MinGW32 and Cygwin types from the OSType enumeration. These values
are represented via environments of Windows. It is a source of confusion and
needlessly clutters the code. The cost of doing this is that we must sink the
check for them into the normalization code path along with the spelling.
Addresses PR20592.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215303 91177308-0d34-0410-b5e6-96231b3b80d8
checking whether the ArrayRef is equal to an explicit list of arguments.
This is particularly easy to implement even without variadic templates
because ArrayRef happens to be homogeneously typed. As a consequence we
can use a "clever" wrapper type and default arguments to capture in
a single method many arguments as well as *how many* arguments the user
specified.
Thanks to Dave Blaikie for helping me pull together this little helper.
Suggestions for how to improve or generalize it are of course welcome.
I'll be using it immediately in my follow-up patch. =D
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214041 91177308-0d34-0410-b5e6-96231b3b80d8
Add a `MapVector::remove_if()` that erases items in bulk in linear time,
as opposed to quadratic time for repeated calls to `MapVector::erase()`.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213090 91177308-0d34-0410-b5e6-96231b3b80d8
Actually update the changed indexes in the map portion of `MapVector`
when erasing from the middle. Add a unit test that checks for this.
Note that `MapVector::erase()` is a linear time operation (it was and
still is). I'll commit a new method in a moment called
`MapVector::remove_if()` that deletes multiple entries in linear time,
which should be slightly less painful.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213084 91177308-0d34-0410-b5e6-96231b3b80d8
The slice(N, M) interface is powerful but not concise when wanting to
drop a few elements off of an ArrayRef, fix this by adding a drop_back
method.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212370 91177308-0d34-0410-b5e6-96231b3b80d8
Certain versions of GCC (~4.7) couldn't handle the SFINAE on access
control, but with "= delete" (hidden behind a macro for portability)
this issue is worked around/addressed.
Patch by Agustín Bergé
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211525 91177308-0d34-0410-b5e6-96231b3b80d8