If built with -Wunused-variable, clang objects to the declarations due to the
unused variable; drop the names. NFC.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222944 91177308-0d34-0410-b5e6-96231b3b80d8
This was motivated by a bug which caused code like this to be
miscompiled:
declare void @take_ptr(i8*)
define void @test() {
%addr1.32 = alloca i8
%addr2.32 = alloca i32, i32 1028
call void @take_ptr(i8* %addr1)
ret void
}
This was emitting the following assembly to get the value of %addr1:
add r0, sp, #1020
add r0, r0, #8
However, "add r0, r0, #8" is not a valid Thumb1 instruction, and this
could not be assembled. The generated object file contained this,
resulting in r0 holding SP+8 rather tha SP+1028:
add r0, sp, #1020
add r0, sp, #8
This function looked like it could have caused miscompilations for
other combinations of registers and offsets (though I don't think it is
currently called with these), and the heuristic it used did not match
the emitted code in all cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222125 91177308-0d34-0410-b5e6-96231b3b80d8
This requires incorporating __GNUC_PATCHLEVEL__ into our prerequisite
check, and renaming our __GNUC_PREREQ to LLVM_GNUC_PREREQ, since it is
now functionally different.
Patch by Chilledheart!
Differential Revision: http://reviews.llvm.org/D5879
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220332 91177308-0d34-0410-b5e6-96231b3b80d8
llvm::huge_valf is defined in a header file, so it is initialized
multiple times in every compiled unit upon program startup.
With non-VC compilers huge_valf is set to a HUGE_VALF which the
compiler can probably optimize out.
With VC numeric_limits<float>::infinity() does not return a number
but a runtime structure member which therotically may change
between calls so the compiler does not optimize out the
initialization and it happens many times. It can be easily seen by
placing a breakpoint on the initialization line.
This patch moves llvm::huge_valf initialization to a source file
instead of the header.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218567 91177308-0d34-0410-b5e6-96231b3b80d8
Instead of aligning and moving the CurPtr forward, and then comparing
with End, simply calculate how much space is needed, and compare that
to how much is available.
Hopefully this avoids any doubts about comparing addresses possibly
derived from past the end of the slab array, overflowing, etc.
Also add a test where aligning CurPtr would move it past End.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217330 91177308-0d34-0410-b5e6-96231b3b80d8
In theory, alignPtr() could push a pointer beyond the end of the current slab, making
comparisons with that pointer undefined behaviour. Use an integer type to avoid this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216973 91177308-0d34-0410-b5e6-96231b3b80d8
Add a function to combine two 32-bit integers into a 64-bit integer.
There are no calls to this function yet, although a subsequent change
will add some in LLDB.
Reviewers: rnk
Differential Revision: http://reviews.llvm.org/D3941
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209777 91177308-0d34-0410-b5e6-96231b3b80d8
powers of two. This is essentially always the correct thing given the
impact on alignment, scaling factors that can be used in addressing
modes, etc. Also, fix the management of the unroll vs. small loop cost
to more accurately model things with this world.
Enhance a test case to actually exercise more of the unroll machinery if
using synthetic constants rather than a specific target model. Before
this change, with the added flags this test will unroll 3 times instead
of either 2 or 4 (the two sensible answers).
While I don't expect this to make a huge difference, if there are lots
of loops sitting right on the edge of hitting the 'small unroll' factor,
they might change behavior. However, I've benchmarked moving the small
loop cost up and down in many various ways and by a huge factor (2x)
without seeing more than 0.2% code size growth. Small adjustments such
as the series that led up here have led to about 1% improvement on some
benchmarks, but it is very close to the noise floor so I mostly checked
that nothing regressed. Let me know if you see bad behavior on other
targets but I don't expect this to be a sufficiently dramatic change to
trigger anything.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200213 91177308-0d34-0410-b5e6-96231b3b80d8
subsequent changes are easier to review. About to fix some layering
issues, and wanted to separate out the necessary churn.
Also comment and sink the include of "Windows.h" in three .inc files to
match the usage in Memory.inc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198685 91177308-0d34-0410-b5e6-96231b3b80d8
building outside projects with a different compiler than that used to build
LLVM itself (eg switching between gcc and clang).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183650 91177308-0d34-0410-b5e6-96231b3b80d8
* wrap code blocks in \code ... \endcode;
* refer to parameter names in paragraphs correctly (\arg is not what most
people want -- it starts a new paragraph).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163790 91177308-0d34-0410-b5e6-96231b3b80d8
There is a pretty staggering amount of this in LLVM's header files, this
is not all of the instances I'm afraid. These include all of the
functions that (in my build) are used by a non-static inline (or
external) function. Specifically, these issues were caught by the new
'-Winternal-linkage-in-inline' warning.
I'll try to just clean up the remainder of the clearly redundant "static
inline" cases on functions (not methods!) defined within headers if
I can do so in a reliable way.
There were even several cases of a missing 'inline' altogether, or my
personal favorite "static bool inline". Go figure. ;]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158800 91177308-0d34-0410-b5e6-96231b3b80d8
Overflowing an unsigned integer is fine and behaves as you would expect.
Also fix a pasto, allowing SignExtend64 to take a 64-bit argument.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@100517 91177308-0d34-0410-b5e6-96231b3b80d8
backend (ARMDecoderEmitter) which emits the decoder functions for ARM and Thumb,
and the disassembler core which invokes the decoder function and builds up the
MCInst based on the decoded Opcode.
Reviewed by Chris Latter and Bob Wilson.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@100233 91177308-0d34-0410-b5e6-96231b3b80d8
makes calls a little bit more consistent and allows easy removal of the
specializations in the future. Convert all callers to the templated functions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@99838 91177308-0d34-0410-b5e6-96231b3b80d8