COFF section flags are not idempotent:
'rd' will make a read-write section because 'd' implies write
'dr' will make a read-only section because 'r' disables write
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228490 91177308-0d34-0410-b5e6-96231b3b80d8
Now that -mstack-probe-size is piped through to the backend via the function
attribute as on Windows x86, honour the value to permit handling of non-default
values for stack probes. This is needed /Gs with the clang-cl driver or
-mstack-probe-size with the clang driver when targeting Windows on ARM.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227667 91177308-0d34-0410-b5e6-96231b3b80d8
When performing a dynamic stack adjustment without optimisations, we would mark
SP as def and R4 as kill. This occurred as part of the expansion of a
WIN__CHKSTK SDNode which indicated the proper handling of SP and R4. The result
would be that we would double define SP as part of an operation, which is
obviously incorrect.
Furthermore, the VTList for the chain had an incorrect parameter type of i32
instead of Other.
Correct these to permit proper lowering of __builtin_alloca at -O0.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213442 91177308-0d34-0410-b5e6-96231b3b80d8
This completes the handling for DLL import storage symbols when lowering
instructions. A DLL import storage symbol must have an additional load
performed prior to use. This is applicable to variables and functions.
This is particularly important for non-function symbols as it is possible to
handle function references by emitting a thunk which performs the translation
from the unprefixed __imp_ symbol to the proper symbol (although, this is a
non-optimal lowering). For a variable symbol, no such thunk can be
accommodated.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212431 91177308-0d34-0410-b5e6-96231b3b80d8
Windows on ARM uses COFF/PE which is intrinsically position independent. For
the case of 32-bit immediates, use a pair-wise relocation as otherwise we may
exceed the range of operators. This fixes a code generation crash when using
-Oz when targeting Windows on ARM.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210814 91177308-0d34-0410-b5e6-96231b3b80d8
The armv7-windows-itanium environment is nearly identical to the MSVC ABI. It
has a few divergences, mostly revolving around the use of the Itanium ABI for
C++. VLA support is one of the extensions that are amongst the set of the
extensions.
This adds support for proper VLA emission for this environment. This is
somewhat similar to the handling for __chkstk emission on X86 and the large
stack frame emission for ARM. The invocation style for chkstk is still
controlled via the -mcmodel flag to clang.
Make an explicit note that this is an extension.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210489 91177308-0d34-0410-b5e6-96231b3b80d8
COFF/PE, so the relocation model is never static. Loosen the assertion
accordingly. The relocation can still be emitted properly, as it will be
converted to an IMAGE_REL_ARM_ADDR32 which will be resolved by the loader
taking the base relocation into account. This is necessary to permit the
emission of long calls which can be controlled via the -mlong-calls option in
the driver.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210399 91177308-0d34-0410-b5e6-96231b3b80d8
Although the previous code would construct a bundle and add the correct elements
to it, it would not finalise the bundle. This resulted in the InternalRead
markers not being added to the MachineOperands nor, more importantly, the
externally visible defs to the bundle itself. So, although the bundle was not
exposing the def, the generated code would be correct because there was no
optimisations being performed. When optimisations were enabled, the post
register allocator would kick in, and the hazard recognizer would reorder
operations around the load which would define the value being operated upon.
Rather than manually constructing the bundle, simply construct and finalise the
bundle via the finaliseBundle call after both MIs have been emitted. This
improves the code generation with optimisations where IMAGE_REL_ARM_MOV32T
relocations are emitted.
The changes to the other tests are the result of the bundle generation
preventing the scheduler from hoisting the moves across the loads. The net
effect of the generated code is equivalent, but, is much more identical to what
is actually being lowered.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209267 91177308-0d34-0410-b5e6-96231b3b80d8
Windows on ARM uses R11 for the frame pointer even though the environment is a
pure Thumb-2, thumb-only environment. Replicate this behaviour to improve
Windows ABI compatibility. This register is used for fast stack walking, and
thus is part of the Windows ABI.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209085 91177308-0d34-0410-b5e6-96231b3b80d8
WoA uses COFF, not ELF. ARMISelLowering::createTLOF would previously return ELF
for any non-MachO platform. This was a missed site when the original change for
target format support for Windows on ARM was done.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209057 91177308-0d34-0410-b5e6-96231b3b80d8
Add some Windows on ARM specific library calls. These are provided by msvcrt,
and can be used to perform integer to floating-point conversions (and
vice-versa) mirroring similar functions in the RTABI.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208949 91177308-0d34-0410-b5e6-96231b3b80d8
Handle lowering of global addresses for PIC mode compilation on Windows. Always
use the movw/movt load to load the address as Windows on ARM requires ARMv7+ and
is a pure Thumb environment.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208385 91177308-0d34-0410-b5e6-96231b3b80d8
The ARM::BLX instruction is an ARM mode instruction. The Windows on ARM target
is limited to Thumb instructions. Correctly use the thumb mode tBLXr
instruction. This would manifest as an errant write into the object file as the
instruction is 4-bytes in length rather than 2. The result would be a corrupted
object file that would eventually result in an executable that would crash at
runtime.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208152 91177308-0d34-0410-b5e6-96231b3b80d8
Windows on ARM does not conform to AEABI. However, memset would be emitted
using the AEABI signature, resulting in inverted parameters. Handle this
special case appropriately.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207943 91177308-0d34-0410-b5e6-96231b3b80d8
This introduces the stack lowering emission of the stack probe function for
Windows on ARM. The stack on Windows on ARM is a dynamically paged stack where
any page allocation which crosses a page boundary of the following guard page
will cause a page fault. This page fault must be handled by the kernel to
ensure that the page is faulted in. If this does not occur and a write access
any memory beyond that, the page fault will go unserviced, resulting in an
abnormal program termination.
The watermark for the stack probe appears to be at 4080 bytes (for
accommodating the stack guard canaries and stack alignment) when SSP is
enabled. Otherwise, the stack probe is emitted on the page size boundary of
4096 bytes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207615 91177308-0d34-0410-b5e6-96231b3b80d8
IMAGE_REL_ARM_MOV32T relocations require that the movw/movt pair-wise
relocation is not split up and reordered. When expanding the mov32imm
pseudo-instruction, create a bundle if the machine operand is referencing an
address. This helps ensure that the relocatable address load is not reordered
by subsequent passes.
Unfortunately, this only partially handles the case as the Constant Island Pass
occurs after the instructions are unbundled and does not properly handle
bundles. That is a more fundamental issue with the pass itself and beyond the
scope of this change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207608 91177308-0d34-0410-b5e6-96231b3b80d8
Update the subtarget information for Windows on ARM. This enables using the MC
layer to target Windows on ARM.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205459 91177308-0d34-0410-b5e6-96231b3b80d8