Ugh. Turns out not even transformation passes link in how to read IR.
I sincerely believe the buildbots will finally agree with my system
after this though. (I don't really understand why all of this has been
working on my system, but not on all the buildbots.)
Create a new tool called llvm-uselistorder to use for verifying use-list
order. For now, just dump everything from the (now defunct)
-verify-use-list-order pass into the tool.
This might be a better way to test use-list order anyway.
Part of PR5680.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213957 91177308-0d34-0410-b5e6-96231b3b80d8
Add a -verify-use-list-order pass, which shuffles use-list order, writes
to bitcode, reads back, and verifies that the (shuffled) order matches.
- The utility functions live in lib/IR/UseListOrder.cpp.
- Moved (and renamed) the command-line option to enable writing
use-lists, so that this pass can return early if the use-list orders
aren't being serialized.
It's not clear that this pass is the right direction long-term (perhaps
a separate tool instead?), but short-term it's a great way to test the
use-list order prototype. I've added an XFAIL-ed testcase that I'm
hoping to get working pretty quickly.
This is part of PR5680.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213945 91177308-0d34-0410-b5e6-96231b3b80d8
There's a bit of duplicated "magic" code in opt.cpp and Clang's CodeGen that
computes the inliner threshold from opt level and size opt level.
This patch moves the code to a function that lives alongside the inliner itself,
providing a convenient overload to the inliner creation.
A separate patch can be committed to Clang to use this once it's committed to
LLVM. Standalone tools that use the inlining pass can also avoid duplicating
this code and fearing it will go out of sync.
Note: this patch also restructures the conditinal logic of the computation to
be cleaner.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203669 91177308-0d34-0410-b5e6-96231b3b80d8
Reapply r199191, reverted in r199197 because it carelessly broke
Other/link-opts.ll. The problem was that calling
createInternalizePass("main") would select
createInternalizePass(bool("main")) instead of
createInternalizePass(ArrayRef<const char *>("main")). This commit
fixes the bug.
The original commit message follows.
Add API to LTOCodeGenerator to specify a strategy for the -internalize
pass.
This is a new attempt at Bill's change in r185882, which he reverted in
r188029 due to problems with the gold linker. This puts the onus on the
linker to decide whether (and what) to internalize.
In particular, running internalize before outputting an object file may
change a 'weak' symbol into an internal one, even though that symbol
could be needed by an external object file --- e.g., with arclite.
This patch enables three strategies:
- LTO_INTERNALIZE_FULL: the default (and the old behaviour).
- LTO_INTERNALIZE_NONE: skip -internalize.
- LTO_INTERNALIZE_HIDDEN: only -internalize symbols with hidden
visibility.
LTO_INTERNALIZE_FULL should be used when linking an executable.
Outputting an object file (e.g., via ld -r) is more complicated, and
depends on whether hidden symbols should be internalized. E.g., for
ld -r, LTO_INTERNALIZE_NONE can be used when -keep_private_externs, and
LTO_INTERNALIZE_HIDDEN can be used otherwise. However,
LTO_INTERNALIZE_FULL is inappropriate, since the output object file will
eventually need to link with others.
lto_codegen_set_internalize_strategy() sets the strategy for subsequent
calls to lto_codegen_write_merged_modules() and lto_codegen_compile*().
<rdar://problem/14334895>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199244 91177308-0d34-0410-b5e6-96231b3b80d8
Add API to LTOCodeGenerator to specify a strategy for the -internalize
pass.
This is a new attempt at Bill's change in r185882, which he reverted in
r188029 due to problems with the gold linker. This puts the onus on the
linker to decide whether (and what) to internalize.
In particular, running internalize before outputting an object file may
change a 'weak' symbol into an internal one, even though that symbol
could be needed by an external object file --- e.g., with arclite.
This patch enables three strategies:
- LTO_INTERNALIZE_FULL: the default (and the old behaviour).
- LTO_INTERNALIZE_NONE: skip -internalize.
- LTO_INTERNALIZE_HIDDEN: only -internalize symbols with hidden
visibility.
LTO_INTERNALIZE_FULL should be used when linking an executable.
Outputting an object file (e.g., via ld -r) is more complicated, and
depends on whether hidden symbols should be internalized. E.g., for
ld -r, LTO_INTERNALIZE_NONE can be used when -keep_private_externs, and
LTO_INTERNALIZE_HIDDEN can be used otherwise. However,
LTO_INTERNALIZE_FULL is inappropriate, since the output object file will
eventually need to link with others.
lto_codegen_set_internalize_strategy() sets the strategy for subsequent
calls to lto_codegen_write_merged_modules() and lto_codegen_compile*().
<rdar://problem/14334895>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199191 91177308-0d34-0410-b5e6-96231b3b80d8
There are two ways one could implement hiding of linkonce_odr symbols in LTO:
* LLVM tells the linker which symbols can be hidden if not used from native
files.
* The linker tells LLVM which symbols are not used from other object files,
but will be put in the dso symbol table if present.
GOLD's API is the second option. It was implemented almost 1:1 in llvm by
passing the list down to internalize.
LLVM already had partial support for the first option. It is also very similar
to how ld64 handles hiding these symbols when *not* doing LTO.
This patch then
* removes the APIs for the DSO list.
* marks LTO_SYMBOL_SCOPE_DEFAULT_CAN_BE_HIDDEN all linkonce_odr unnamed_addr
global values and other linkonce_odr whose address is not used.
* makes the gold plugin responsible for handling the API mismatch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193800 91177308-0d34-0410-b5e6-96231b3b80d8
Generalize the API so we can distinguish symbols that are needed just for a DSO
symbol table from those that are used from some native .o.
The symbols that are only wanted for the dso symbol table can be dropped if
llvm can prove every other dso has a copy (linkonce_odr) and the address is not
important (unnamed_addr).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191922 91177308-0d34-0410-b5e6-96231b3b80d8
list of externals. This makes sense since a shared library with no symbols
can still be useful if it has static constructors.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166795 91177308-0d34-0410-b5e6-96231b3b80d8
over the implicitly-formed-and-nesting CGSCC pass manager and function
pass managers, especially when using them on the opt commandline or
using extension points in the module builder. The '-barrier' opt flag
(or the pass itself) will create a no-op module pass in the pipeline,
resetting the pass manager stack, and allowing the creation of a new
pipeline of function passes or CGSCC passes to be created that is
independent from any previous pipelines.
For example, this can be used to test running two CGSCC passes in
independent CGSCC pass managers as opposed to in the same CGSCC pass
manager. It also allows us to introduce a further hack into the
PassManagerBuilder to separate the O0 pipeline extension passes from the
always-inliner's CGSCC pass manager, which they likely do not want to
participate in... At the very least none of the Sanitizer passes want
this behavior.
This fixes a bug with ASan at O0 currently, and I'll commit the ASan
test which covers this pass. I'm happy to add a test case that this pass
exists and works, but not sure how much time folks would like me to
spend adding test cases for the details of its behavior of partition
pass managers.... The whole thing is just vile, and mostly intended to
unblock ASan, so I'm hoping to rip this all out in a brave new pass
manager world.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166172 91177308-0d34-0410-b5e6-96231b3b80d8
are optimization hints, but at -O0 we're not optimizing. This becomes a problem
when the alwaysinline attribute is abused.
rdar://10921594
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151429 91177308-0d34-0410-b5e6-96231b3b80d8
patch brings numerous advantages to LLVM. One way to look at it
is through diffstat:
109 files changed, 3005 insertions(+), 5906 deletions(-)
Removing almost 3K lines of code is a good thing. Other advantages
include:
1. Value::getType() is a simple load that can be CSE'd, not a mutating
union-find operation.
2. Types a uniqued and never move once created, defining away PATypeHolder.
3. Structs can be "named" now, and their name is part of the identity that
uniques them. This means that the compiler doesn't merge them structurally
which makes the IR much less confusing.
4. Now that there is no way to get a cycle in a type graph without a named
struct type, "upreferences" go away.
5. Type refinement is completely gone, which should make LTO much MUCH faster
in some common cases with C++ code.
6. Types are now generally immutable, so we can use "Type *" instead
"const Type *" everywhere.
Downsides of this patch are that it removes some functions from the C API,
so people using those will have to upgrade to (not yet added) new API.
"LLVM 3.0" is the right time to do this.
There are still some cleanups pending after this, this patch is large enough
as-is.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134829 91177308-0d34-0410-b5e6-96231b3b80d8
has some bugs. If this is interesting functionality, it should be
reimplemented in the argpromotion pass.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129314 91177308-0d34-0410-b5e6-96231b3b80d8
threshold given to createFunctionInliningPass().
Both opt -O3 and clang would silently ignore the -inline-threshold option.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@118117 91177308-0d34-0410-b5e6-96231b3b80d8
exactly what bugpoint expected it to do.
There was also only one user of
BlockExtractorPass(const std::vector<BasicBlock*> &B), so just remove it and
make BlockExtractorPass read BlockFile.
This fixes bugpoint's block extraction.
Nick, please review.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@109936 91177308-0d34-0410-b5e6-96231b3b80d8
such a way that debug info for symbols preserved even if symbols are
optimized away by the optimizer.
Add new special pass to remove debug info for such symbols.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@107416 91177308-0d34-0410-b5e6-96231b3b80d8
Update all analysis passes and transforms to treat free calls just like FreeInst.
Remove RaiseAllocations and all its tests since FreeInst no longer needs to be raised.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@84987 91177308-0d34-0410-b5e6-96231b3b80d8
is that, for functions whose bodies are entirely guarded by an if-statement, it
can be profitable to pull the test out of the callee and into the caller.
This code has had some cursory testing, but still has a number of known issues
on the LLVM test suite.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73338 91177308-0d34-0410-b5e6-96231b3b80d8
to work out (in a very simplistic way) which function
arguments (pointer arguments only) are only dereferenced
and so do not escape. Mark such arguments 'nocapture'.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@61525 91177308-0d34-0410-b5e6-96231b3b80d8
This triggers only 60 times in llvm-test (look at .llvm.bc, not .linked.rbc)
and so it probably wont be turned on by default. Also, may of those are likely
to go away when PR2973 is fixed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@58557 91177308-0d34-0410-b5e6-96231b3b80d8
can get the readnone/readonly attributes, and gives them it.
The plan is to remove markmodref (which did the same thing
by querying GlobalsModRef) and delete the analogous
functionality from GlobalsModRef.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56341 91177308-0d34-0410-b5e6-96231b3b80d8
a FunctionPass. This makes it simpler, fixes dozens of bugs, adds
a couple of minor features, and shrinks is considerably: from
2214 to 1437 lines.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@50520 91177308-0d34-0410-b5e6-96231b3b80d8
This pass transforms
%struct._Point = type { i32, i32, i32, i32, i32, i32 }
define internal void @foo(%struct._Point* sret %agg.result)
into
%struct._Point = type { i32, i32, i32, i32, i32, i32 }
define internal %struct._Point @foo()
This pass updates foo() clients appropriately to use
getresult instruction to extract return values.
This pass is not yet ready for prime time.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@47776 91177308-0d34-0410-b5e6-96231b3b80d8