Flag -fast-isel-abort is required in order to verify that X86FastISel
never fails to select FPExt (float-to-double) and FPTrunc (double-to-float).
No Functional change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229489 91177308-0d34-0410-b5e6-96231b3b80d8
GCC 4.8 reported two new warnings due to comparisons
between signed and unsigned integer expressions. The new warnings were
accidentally introduced by revision 229480.
Added explicit casts to silence the warnings. No functional change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229488 91177308-0d34-0410-b5e6-96231b3b80d8
This added API to the InstrProfWriter to write to a string so I could
write unittests without using temp files. This doesn't really work,
since the format has tighter alignment requirements than a char.
This reverts r229478 and its follow-up, r229481.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229483 91177308-0d34-0410-b5e6-96231b3b80d8
- added mask types v8i1 and v16i1 to possible function parameters
- enabled passing 512-bit vectors in standard CC
- added a test for KNL intel_ocl_bi conventions
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229482 91177308-0d34-0410-b5e6-96231b3b80d8
Vector zext tends to get legalized into a vector anyext, represented as a vector shuffle with an undef vector + a bitcast, that gets ANDed with a mask that zeroes the undef elements.
Combine this into an explicit shuffle with a zero vector instead. This allows shuffle lowering to match it as a zext, instead of matching it as an anyext and emitting an explicit AND.
This combine only covers a subset of the cases, but it's a start.
Differential Revision: http://reviews.llvm.org/D7666
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229480 91177308-0d34-0410-b5e6-96231b3b80d8
Add these tests again, but use va_list instead of initializer lists.
This reverts r229456, reapplying r229455.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229478 91177308-0d34-0410-b5e6-96231b3b80d8
wasConservativelyAllocatable() is only called to assert that a conservatively
allocatable node wasn't forced to spill.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229477 91177308-0d34-0410-b5e6-96231b3b80d8
initialization. Initialize the subtarget once per function and
migrate EmitStartOfAsmFile to either use attributes on the
TargetMachine or get information from all of the various
subtargets.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229475 91177308-0d34-0410-b5e6-96231b3b80d8
This required changing how the computation of the ABI is handled
and how some of the checks for ABI/target are done.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229471 91177308-0d34-0410-b5e6-96231b3b80d8
The version of the tutorial uses the new compile callbacks API to inject stubs
that trigger IRGen & Codegen of their respective function bodies when they are
first called.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229466 91177308-0d34-0410-b5e6-96231b3b80d8
This allows it to match still more places where previously we would have
to fall back on floating point shuffles or other more complex lowering
strategies.
I'm hoping to replace some of the hand-rolled unpack matching with this
routine is it gets more and more clever.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229463 91177308-0d34-0410-b5e6-96231b3b80d8
BDCE is a bit-tracking dead code elimination pass. It is based on ADCE (the
"aggressive DCE" pass), with the added capability to track dead bits of integer
valued instructions and remove those instructions when all of the bits are
dead.
Currently, it does not actually do this all-bits-dead removal, but rather
replaces the instruction's uses with a constant zero, and lets instcombine (and
the later run of ADCE) do the rest. Because we essentially get a run of ADCE
"for free" while tracking the dead bits, we also do what ADCE does and removes
actually-dead instructions as well (this includes instructions newly trivially
dead because all bits were dead, but not all such instructions can be removed).
The motivation for this is a case like:
int __attribute__((const)) foo(int i);
int bar(int x) {
x |= (4 & foo(5));
x |= (8 & foo(3));
x |= (16 & foo(2));
x |= (32 & foo(1));
x |= (64 & foo(0));
x |= (128& foo(4));
return x >> 4;
}
As it turns out, if you order the bit-field insertions so that all of the dead
ones come last, then instcombine will remove them. However, if you pick some
other order (such as the one above), the fact that some of the calls to foo()
are useless is not locally obvious, and we don't remove them (without this
pass).
I did a quick compile-time overhead check using sqlite from the test suite
(Release+Asserts). BDCE took ~0.4% of the compilation time (making it about
twice as expensive as ADCE).
I've not looked at why yet, but we eliminate instructions due to having
all-dead bits in:
External/SPEC/CFP2006/447.dealII/447.dealII
External/SPEC/CINT2006/400.perlbench/400.perlbench
External/SPEC/CINT2006/403.gcc/403.gcc
MultiSource/Applications/ClamAV/clamscan
MultiSource/Benchmarks/7zip/7zip-benchmark
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229462 91177308-0d34-0410-b5e6-96231b3b80d8
This patch replaces most of the Orc indirection utils API with a new class:
JITCompileCallbackManager, which creates and manages JIT callbacks.
Exposing this functionality directly allows the user to create callbacks that
are associated with user supplied compilation actions. For example, you can
create a callback to lazyily IR-gen something from an AST. (A kaleidoscope
example demonstrating this will be committed shortly).
This patch also refactors the CompileOnDemand layer to use the
JITCompileCallbackManager API.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229461 91177308-0d34-0410-b5e6-96231b3b80d8
This test was failing on non-x86 hosts because it specified a cpu of x86_64,
but not an architecture. x86_64 is obviously not a valid cpu on all
architectures.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229460 91177308-0d34-0410-b5e6-96231b3b80d8
While looking at a heap profile of a clang LTO bootstrap with -g, I
noticed that 2.2% of memory in an `llvm-lto` of clang is from calling
`DebugLoc::get()` in `collectVariableInfo()` (accounting for ~40% of
memory used for `MDLocation`s).
I suspect this was introduced by r226736, whose goal was to prevent
uniquing of `DebugLoc`s (goal achieved, if so).
There's no reason we need a `DebugLoc` here at all -- it was just being
used for (in)convenient API -- so the fix is to pass the scope and
inlined-at directly to `LexicalScopes::findInlinedScope()`.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229459 91177308-0d34-0410-b5e6-96231b3b80d8
Our register allocation has become better recently, it seems, and is now
starting to generate cross-block copies into inflated register classes. These
copies are not transformed into subregister insertions/extractions by the
PPCVSXCopy class, and so need to be handled directly by
PPCInstrInfo::copyPhysReg. The code to do this was *almost* there, but not
quite (it was unnecessarily restricting itself to only the direct
sub/super-register-class case (not copying between, for example, something in
VRRC and the lower-half of VSRC which are super-registers of F8RC).
Triggering this behavior manually is difficult; I'm including two
bugpoint-reduced test cases from the test suite.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229457 91177308-0d34-0410-b5e6-96231b3b80d8
This required some minor API to be added to these types to avoid
needing temp files.
Also, I've used initializer lists in the tests, as MSVC 2013 claims to
support them. I'll redo this without them if the bots complain.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229455 91177308-0d34-0410-b5e6-96231b3b80d8
and LazyEmittingLayer of Orc.
This method allows you to immediately emit and finalize a module. It is required
by an upcoming refactor of the indirection utils and the compile-on-demand
layer.
I've filed http://llvm.org/PR22608 to write unit tests for this and other Orc
APIs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229451 91177308-0d34-0410-b5e6-96231b3b80d8
We cannot simply rematerialize instructions which only defining a
subregister, as the final value also depends on the previous
instructions.
This fixes test/CodeGen/R600/subreg-coalescer-bug.ll with subreg
liveness enabled.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229444 91177308-0d34-0410-b5e6-96231b3b80d8
IMPLICIT_DEF is a generic instruction and has no (fixed) output register
class defined. The rematerialization code of the register coalescer
should not scan the instruction description for a register class.
This fixes a problem showing up in
test/CodeGen/R600/subreg-coalescer-crash.ll with subregister liveness
enabled.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229443 91177308-0d34-0410-b5e6-96231b3b80d8
The other InstrProfReader::create factories were updated to return
ErrorOr in r221120, and it's odd for these APIs not to match.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229433 91177308-0d34-0410-b5e6-96231b3b80d8
The previous fix in r225503 was needlessly complicated. The problem goes
away as well if the arguments to MergeValueNumberInto are supplied in the
correct order.
This was previously missed because the existing code already had the
wrong order but an additional later Merge was hiding the bug for the
main liverange VNI.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229424 91177308-0d34-0410-b5e6-96231b3b80d8
The metadata/value split introduced a major regression reading large
bitcode files that contain debug info (or other cyclic (non-self
reference) metadata graphs). For the first time in a while, I dropped
from libLTO.dylib down to `llvm-lto` with a non-trivial bitcode file
(~350MB), and I hit this when reading the result of ld64's `-save-temps`
in `llvm-lto`.
Here's pseudo-code for what was going on:
read-main-metadata-block:
for each md:
if has-fwd-ref: // Only true for cyclic graphs.
any-fwd-refs <- true
if any-fwd-refs:
foreach md:
resolve-cycles(md) // Handle cycles.
foreach function:
read-function-metadata-block: // Such as !alias, !loop
if any-fwd-refs:
foreach md: // (all metadata, not just this block)
resolve-cycles(md) // A no-op, but the loop is expensive!!
This commit resets the `AnyFwdRefs` flag to `false`. This on its own
was enough to change my Release+Asserts `llvm-lto` time for reading this
bitcode from over 20 minutes (I gave up on it) to 20 seconds. I've gone
further by tracking the min/max metadata forward-references in a
metadata block. This protects against a schema that has lots of
functions that each reference their own metadata cycle.
Unfortunately, this regression is in the 3.6 branch as well.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229421 91177308-0d34-0410-b5e6-96231b3b80d8