Summary:
In PNaCl, most atomic instructions have their own @llvm.nacl.atomic.* function, each one, with a few exceptions, represents a consistent behaviour across all NaCl-supported targets. Unfortunately, the atomic RMW operations nand, [u]min, and [u]max aren't directly represented by any such @llvm.nacl.atomic.* function. This patch refines shouldExpandAtomicRMWInIR in TargetLowering so that a future `Le32TargetLowering` class can selectively inform the caller how the target desires the atomic RMW instruction to be expanded (ie via load-linked/store-conditional for ARM/AArch64, via cmpxchg for X86/others?, or not at all for Mips) if at all.
This does not represent a behavioural change and as such no tests were added.
Patch by: Richard Diamond.
Reviewers: jfb
Reviewed By: jfb
Subscribers: jfb, aemerson, t.p.northover, llvm-commits
Differential Revision: http://reviews.llvm.org/D7713
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231250 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
I originally tried doing this specifically for X86 in the backend in D5091,
but it was rather brittle and generally running too late to be general.
Furthermore, other targets may want to implement similar optimizations.
So I reimplemented it at the IR-level, fitting it into AtomicExpandPass
as it interacts with that pass (which could not be cleanly done before
at the backend level).
This optimization relies on a new target hook, which is only used by X86
for now, as the correctness of the optimization on other targets remains
an open question. If it is found correct on other targets, it should be
trivial to enable for them.
Details of the optimization are discussed in D5091.
Test Plan: make check-all + a new test
Reviewers: jfb
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5422
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218455 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
AtomicExpand already had logic for expanding wide loads and stores on LL/SC
architectures, and for expanding wide stores on CmpXchg architectures, but
not for wide loads on CmpXchg architectures. This patch fills this hole,
and makes use of this new feature in the X86 backend.
Only one functionnal change: we now lose the SynchScope attribute.
It is regrettable, but I have another patch that I will submit soon that will
solve this for all of AtomicExpand (it seemed better to split it apart as it
is a different concern).
Test Plan: make check-all (lots of tests for this functionality already exist)
Reviewers: jfb
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5404
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218332 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
The goal is to eventually remove all the code related to getInsertFencesForAtomic
in SelectionDAGBuilder as it is wrong (designed for ARM, not really portable, works
mostly by accident because the backends are overly conservative), and repeats the
same logic that goes in emitLeading/TrailingFence.
In this patch, I make AtomicExpandPass insert the fences as it knows better
where to put them. Because this requires getting the fences and not just
passing an IRBuilder around, I had to change the return type of
emitLeading/TrailingFence.
This code only triggers on ARM for now. Because it is earlier in the pipeline
than SelectionDAGBuilder, it triggers and lowers atomic accesses to atomic so
SelectionDAGBuilder does not add barriers anymore on ARM.
If this patch is accepted I plan to implement emitLeading/TrailingFence for all
backends that setInsertFencesForAtomic(true), which will allow both making them
less conservative and simplifying SelectionDAGBuilder once they are all using
this interface.
This should not cause any functionnal change so the existing tests are used
and not modified.
Test Plan: make check-all, benefits from existing tests of atomics on ARM
Reviewers: jfb, t.p.northover
Subscribers: aemerson, llvm-commits
Differential Revision: http://reviews.llvm.org/D5179
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218329 91177308-0d34-0410-b5e6-96231b3b80d8
This required a new hook called hasLoadLinkedStoreConditional to know whether
to expand atomics to LL/SC (ARM, AArch64, in a future patch Power) or to
CmpXchg (X86).
Apart from that, the new code in AtomicExpandPass is mostly moved from
X86AtomicExpandPass. The main result of this patch is to get rid of that
pass, which had lots of code duplicated with AtomicExpandPass.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217928 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Split shouldExpandAtomicInIR() into different versions for Stores/Loads/RMWs/CmpXchgs.
Makes runOnFunction cleaner (no more redundant checking/casting), and will help moving
the X86 backend to this pass.
This requires a way of easily detecting which instructions are atomic.
I followed the pattern of mayReadFromMemory, mayWriteOrReadMemory, etc.. in making
isAtomic() a method of Instruction implemented by a switch on the opcodes.
Test Plan: make check
Reviewers: jfb
Subscribers: mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D5035
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217080 91177308-0d34-0410-b5e6-96231b3b80d8
Fixes two latent bugs:
- There was no fence inserted before expanded seq_cst load (unsound on Power)
- There was only a fence release before seq_cst stores (again unsound, in particular on Power)
It is not even clear if this is correct on ARM swift processors (where release fences are
DMB ishst instead of DMB ish). This behaviour is currently preserved on ARM Swift
as it is not clear whether it is incorrect. I would love to get documentation stating
whether it is correct or not.
These two bugs were not triggered because Power is not (yet) using this pass, and these
behaviours happen to be (mostly?) working on ARM
(although they completely butchered the semantics of the llvm IR).
See:
http://lists.cs.uiuc.edu/pipermail/llvmdev/2014-August/075821.html
for an example of the problems that can be caused by the second of these bugs.
I couldn't see a way of fixing these in a completely target-independent way without
adding lots of unnecessary fences on ARM, hence the target-dependent parts of this
patch.
This patch implements the new target-dependent parts only for ARM (the default
of not doing anything is enough for AArch64), other architectures will use this
infrastructure in later patches.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217076 91177308-0d34-0410-b5e6-96231b3b80d8