Most issues are on mishandling s/zext.
Fixes:
1. When rebuilding new indices, s/zext should be distributed to
sub-expressions. e.g., sext(a +nsw (b +nsw 5)) = sext(a) + sext(b) + 5 but not
sext(a + b) + 5. This also affects the logic of recursively looking for a
constant offset, we need to include s/zext into the context of the searching.
2. Function find should return the bitwidth of the constant offset instead of
always sign-extending it to i64.
3. Stop shortcutting zext'ed GEP indices. LLVM conceptually sign-extends GEP
indices to pointer-size before computing the address. Therefore, gep base,
zext(a + b) != gep base, a + b
Improvements:
1. Add an optimization for splitting sext(a + b): if a + b is proven
non-negative (e.g., used as an index of an inbound GEP) and one of a, b is
non-negative, sext(a + b) = sext(a) + sext(b)
2. Function Distributable checks whether both sext and zext can be distributed
to operands of a binary operator. This helps us split zext(sext(a + b)) to
zext(sext(a) + zext(sext(b)) when a + b does not signed or unsigned overflow.
Refactoring:
Merge some common logic of handling add/sub/or in find.
Testing:
Add many tests in split-gep.ll and split-gep-and-gvn.ll to verify the changes
we made.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210291 91177308-0d34-0410-b5e6-96231b3b80d8
This is a first step in seeing if it is possible to make llvm-nm produce
the same output as darwin's nm(1). Darwin's default format is bsd but its
-m output prints the longer Mach-O specific details. For now I added the
"-format darwin" to do this (whos name may need to change in the future).
As there are other Mach-O specific flags to nm(1) which I'm hoping to add some
how in the future. But I wanted to see if I could get the correct output for
-m flag using llvm-nm and the libObject interfaces.
I got this working but would love to hear what others think about this approach
to getting object/format specific details printed with llvm-nm.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210285 91177308-0d34-0410-b5e6-96231b3b80d8
As discussed in cfe commit r210279, the correct little-endian
semantics for the vec_perm Altivec interfaces are implemented by
reversing the order of the input vectors and complementing the permute
control vector. This converts the desired permute from little endian
element order into the big endian element order that the underlying
PowerPC vperm instruction uses. This is represented with a
ppc_altivec_vperm intrinsic function.
The instruction combining pass contains code to convert a
ppc_altivec_vperm intrinsic into a vector shuffle operation when the
intrinsic has a permute control vector (mask) that is a constant.
However, the vector shuffle operation assumes that vector elements are
in natural order for their endianness, so for little endian code we
will get the wrong result with the existing transformation.
This patch reverses the semantic change to vec_perm that was performed
in altivec.h by once again swapping the input operands and
complementing the permute control vector, returning the element
ordering to little endian.
The correctness of this code is tested by the new perm.c test added in
a previous patch, and by other tests in the test suite that fail
without this patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210282 91177308-0d34-0410-b5e6-96231b3b80d8
It includes a pass that rewrites all indirect calls to jumptable functions to pass through these tables.
This also adds backend support for generating the jump-instruction tables on ARM and X86.
Note that since the jumptable attribute creates a second function pointer for a
function, any function marked with jumptable must also be marked with unnamed_addr.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210280 91177308-0d34-0410-b5e6-96231b3b80d8
This is a preliminary patch for the PowerPC64LE support. In stage 1
of the vector support, we will support the VMX (Altivec) instruction
set, but will not yet support the VSX instructions. This is merely a
staging issue to provide functional vector support as soon as
possible.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210271 91177308-0d34-0410-b5e6-96231b3b80d8
When not optimizing, do not run the IfConverter pass, this makes
debugging more difficult (and causes a testsuite failure in
DebugInfo/unconditional-branch.ll).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210263 91177308-0d34-0410-b5e6-96231b3b80d8
r210177 added Makefiles to the lld project.
This revision enables the automatic build of lld when the sources are found in tools/lld.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210245 91177308-0d34-0410-b5e6-96231b3b80d8
No functional change intended, just streamlines the abstract variable
lookup/construction to use a common entry point.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210234 91177308-0d34-0410-b5e6-96231b3b80d8
Unused arguments were not being added to the argument list, but instead
treated as arbitrary scope variables. This meant they weren't carefully
added in the original argument order.
In this particular example, though, it turns out the argument is only
/mostly/ unused (well, actually it's entirely used, but in a specific
way). It's a struct that, due to ABI reasons, is decomposed into chunks
(exactly one chunk, since it has one member) and then passed. Since only
one of those chunks is used (SROA, etc, kill the original reconstitution
code) we don't have a location to describe the whole variable.
In this particular case, since the struct consists of just the one int,
once we have partial location information, this should have a location
that describes the entire variable (since the piece is the entirety of
the object).
And at some point we'll need to describe the location of even /entirely/
unused arguments so that they can at least be printed on function entry.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210231 91177308-0d34-0410-b5e6-96231b3b80d8
Abstract variables within abstract scopes that are entirely optimized
away in their first inlining are omitted because their scope is not
present so the variable is never created. Instead, we should ensure the
scope is created so the variable can be added, even if it's been
optimized away in its first inlining.
This fixes the incorrect debug info in missing-abstract-variable.ll
(added in r210143) and passes an asserts self-hosting build, so
hopefully there's not more of these issues left behind... *fingers
crossed*.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210221 91177308-0d34-0410-b5e6-96231b3b80d8
We would previously assert here when trying to figure out the section
for the global.
This makes us handle the situation more gracefully since the IR isn't
malformed.
Differential Revision: http://reviews.llvm.org/D4022
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210215 91177308-0d34-0410-b5e6-96231b3b80d8
When JITting a large project such as Boost it's quite hard to figure out the problematic inline asm without debug location. This patch provides debug location printout before the JIT aborts due to inline asm. printDebugLoc() was exposed from MachineInstr.cpp and reused here.
If the JIT run with debug info, don't bomb on DBG_VALUE but ignore them.
http://reviews.llvm.org/D3416
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210201 91177308-0d34-0410-b5e6-96231b3b80d8
Add support to llvm-readobj to decode Windows ARM Exception Handling data. This
uses the previously added datastructures to decode the information into a format
that can be used by tests. This is a necessary step to add support for emitting
Windows on ARM exception handling information.
A fair amount of formatting inspiration is drawn from the Win64 EH printer as
well as the ARM EHABI printer. This allows for a reasonably thorough look into
the encoded data.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210192 91177308-0d34-0410-b5e6-96231b3b80d8
Add a helper print method to print a boolean value as "Yes" or "No". This is
intended to be used by the Windows ARM EH printer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210191 91177308-0d34-0410-b5e6-96231b3b80d8
This is purely a documentation/whitespace cleanup for the format support
functions.
The current style does not duplicate the function/class names in the
documentation; conform to this style.
Additionally, there was a large amount of duplication of comments that added no
real value. Use block comments for the related sets of functions which are used
for type deduction and parameter container classes.
No functional change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210190 91177308-0d34-0410-b5e6-96231b3b80d8
Replicate the fact that ARM::WinEH::RuntimeFunction purposefully does not merge
functions to accommodate raw data access use cases in tools such as readobj.
Pointed out by Renato during post-commit review.
No functional change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210189 91177308-0d34-0410-b5e6-96231b3b80d8
This patch implements two things:
1. If we know one number is positive and another is negative, we return true as
signed addition of two opposite signed numbers will never overflow.
2. Implemented TODO : If one of the operands only has one non-zero bit, and if
the other operand has a known-zero bit in a more significant place than it
(not including the sign bit) the ripple may go up to and fill the zero, but
won't change the sign. e.x - (x & ~4) + 1
We make sure that we are ignoring 0 at MSB.
Patch by Suyog Sarda.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210186 91177308-0d34-0410-b5e6-96231b3b80d8