There was exactly one caller using this API right, the others were relying on
specific behavior of the default implementation. Since it's too hard to use it
right just remove it and standardize on the default behavior.
Defines away PR16132.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182636 91177308-0d34-0410-b5e6-96231b3b80d8
This CL delays reading of function bodies from initial parse until
materialization, allowing overlap of compilation with bitcode download.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149918 91177308-0d34-0410-b5e6-96231b3b80d8
all disassemblers.
Modified the MemoryObject to support 64-bit address
spaces, regardless of the LLVM process's address
width.
Modified the Target class to allow extraction of a
MCDisassembler.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@81392 91177308-0d34-0410-b5e6-96231b3b80d8
I'm returning the number of bytes actually copied so that the client has some
warning when it reads past the end of the buffer.
I'm keeping the distinction between getByte() and getBytes() for now for
subclasses that use functions like ptrace() on Linux and only have a restricted
interface. This makes their implementation easier, and subclasses can always
write a one-line implementation of readByte() that uses their custom
readBytes().
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@77225 91177308-0d34-0410-b5e6-96231b3b80d8
Necessary for cases in which the memory is in another process, in a
file, or on a remote machine.
The primary use for this is the llvm-mc disassemblers, so that they
can be targeted at arbitrary objects, not just in-process memory.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@77023 91177308-0d34-0410-b5e6-96231b3b80d8