infrastructure.
This was essentially work toward PGO based on a design that had several
flaws, partially dating from a time when LLVM had a different
architecture, and with an effort to modernize it abandoned without being
completed. Since then, it has bitrotted for several years further. The
result is nearly unusable, and isn't helping any of the modern PGO
efforts. Instead, it is getting in the way, adding confusion about PGO
in LLVM and distracting everyone with maintenance on essentially dead
code. Removing it paves the way for modern efforts around PGO.
Among other effects, this removes the last of the runtime libraries from
LLVM. Those are being developed in the separate 'compiler-rt' project
now, with somewhat different licensing specifically more approriate for
runtimes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191835 91177308-0d34-0410-b5e6-96231b3b80d8
* Only apply divide bypass optimization when not optimizing for size.
* Fixed bug caused by constant for 0 value of type Int32,
used dividend type to generate the constant instead.
* For atom x86-64 apply the divide bypass to use 16-bit divides instead of
64-bit divides when operand values are small enough.
* Added lit tests for 64-bit divide bypass.
Patch by Tyler Nowicki!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176442 91177308-0d34-0410-b5e6-96231b3b80d8
Further encapsulation of the Attribute object. Don't allow direct access to the
Attribute object as an aggregate.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@172853 91177308-0d34-0410-b5e6-96231b3b80d8
peculiar headers under include/llvm.
This struct still doesn't make a lot of sense, but it makes more sense
down in TargetLowering than it did before.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171739 91177308-0d34-0410-b5e6-96231b3b80d8
next to its only user. This helper relies on TargetLowering information
that shouldn't be generally used throughout the Transfoms library, and
so it made little sense as a generic utility.
This also consolidates the file where we need to remove the remaining
uses of TargetLowering in favor of the IR-layer abstract interface in
TargetTransformInfo.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171590 91177308-0d34-0410-b5e6-96231b3b80d8
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.
There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.
The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.
I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).
I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171366 91177308-0d34-0410-b5e6-96231b3b80d8
directly.
This is in preparation for removing the use of the 'Attribute' class as a
collection of attributes. That will shift to the AttributeSet class instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171253 91177308-0d34-0410-b5e6-96231b3b80d8
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169131 91177308-0d34-0410-b5e6-96231b3b80d8
The original patch removed a bunch of code that the SjLjEHPrepare pass placed
into the entry block if all of the landing pads were removed during the
CodeGenPrepare class. The more natural way of doing things is to run the CGP
*before* we run the SjLjEHPrepare pass.
Make it so!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169044 91177308-0d34-0410-b5e6-96231b3b80d8
the last invoke instruction in the function. This also removes the last landing
pad in an function. This is fine, but with SjLj EH code, we've already placed a
bunch of code in the 'entry' block, which expects the landing pad to stick
around.
When we get to the situation where CGP has removed the last landing pad, go
ahead and nuke the SjLj instructions from the 'entry' block.
<rdar://problem/12721258>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168930 91177308-0d34-0410-b5e6-96231b3b80d8
It can delete the block, and the loop continues on free'd memory.
No change in output. Found by valgrind.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168525 91177308-0d34-0410-b5e6-96231b3b80d8
getIntPtrType support for multiple address spaces via a pointer type,
and also introduced a crasher bug in the constant folder reported in
PR14233.
These commits also contained several problems that should really be
addressed before they are re-committed. I have avoided reverting various
cleanups to the DataLayout APIs that are reasonable to have moving
forward in order to reduce the amount of churn, and minimize the number
of commits that were reverted. I've also manually updated merge
conflicts and manually arranged for the getIntPtrType function to stay
in DataLayout and to be defined in a plausible way after this revert.
Thanks to Duncan for working through this exact strategy with me, and
Nick Lewycky for tracking down the really annoying crasher this
triggered. (Test case to follow in its own commit.)
After discussing with Duncan extensively, and based on a note from
Micah, I'm going to continue to back out some more of the more
problematic patches in this series in order to ensure we go into the
LLVM 3.2 branch with a reasonable story here. I'll send a note to
llvmdev explaining what's going on and why.
Summary of reverted revisions:
r166634: Fix a compiler warning with an unused variable.
r166607: Add some cleanup to the DataLayout changes requested by
Chandler.
r166596: Revert "Back out r166591, not sure why this made it through
since I cancelled the command. Bleh, sorry about this!
r166591: Delete a directory that wasn't supposed to be checked in yet.
r166578: Add in support for getIntPtrType to get the pointer type based
on the address space.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167221 91177308-0d34-0410-b5e6-96231b3b80d8
When the switch-to-lookup tables transform landed in SimplifyCFG, it
was pointed out that this could be inappropriate for some targets.
Since there was no way at the time for the pass to know anything about
the target, an awkward reverse-transform was added in CodeGenPrepare
that turned lookup tables back into switches for some targets.
This patch uses the new TargetTransformInfo to determine if a
switch should be transformed, and removes
CodeGenPrepare::ConvertLoadToSwitch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167011 91177308-0d34-0410-b5e6-96231b3b80d8
every TU where it's implicitly instantiated, even if there's an implicit
instantiation for the same types available in another TU.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166470 91177308-0d34-0410-b5e6-96231b3b80d8
We use the enums to query whether an Attributes object has that attribute. The
opaque layer is responsible for knowing where that specific attribute is stored.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165488 91177308-0d34-0410-b5e6-96231b3b80d8
The hasFnAttr method has been replaced by querying the Attributes explicitly. No
intended functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164725 91177308-0d34-0410-b5e6-96231b3b80d8
This is a follow-up from r163302, which added a transformation to
SimplifyCFG that turns some switches into loads from lookup tables.
It was pointed out that some targets, such as GPUs and deeply embedded
targets, might not find this appropriate, but SimplifyCFG doesn't have
enough information about the target to decide this.
This patch adds the reverse transformation to CodeGenPrep: it turns
loads from lookup tables back into switches for targets where we do not
build jump tables (assuming these are also the targets where lookup
tables are inappropriate).
Hopefully we will eventually get to have target information in
SimplifyCFG, and then this CodeGenPrep transformation can be removed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164206 91177308-0d34-0410-b5e6-96231b3b80d8
* wrap code blocks in \code ... \endcode;
* refer to parameter names in paragraphs correctly (\arg is not what most
people want -- it starts a new paragraph).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163790 91177308-0d34-0410-b5e6-96231b3b80d8
- CodeGenPrepare pass for identifying div/rem ops
- Backend specifies the type mapping using addBypassSlowDivType
- Enabled only for Intel Atom with O2 32-bit -> 8-bit
- Replace IDIV with instructions which test its value and use DIVB if the value
is positive and less than 256.
- In the case when the quotient and remainder of a divide are used a DIV
and a REM instruction will be present in the IR. In the non-Atom case
they are both lowered to IDIVs and CSE removes the redundant IDIV instruction,
using the quotient and remainder from the first IDIV. However,
due to this optimization CSE is not able to eliminate redundant
IDIV instructions because they are located in different basic blocks.
This is overcome by calculating both the quotient (DIV) and remainder (REM)
in each basic block that is inserted by the optimization and reusing the result
values when a subsequent DIV or REM instruction uses the same operands.
- Test cases check for the presents of the optimization when calculating
either the quotient, remainder, or both.
Patch by Tyler Nowicki!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163150 91177308-0d34-0410-b5e6-96231b3b80d8
For example, the ARM target does not have efficient ISel handling for vector
selects with scalar conditions. This patch adds a TLI hook which allows the
different targets to report which selects are supported well and which selects
should be converted to CF duting codegen prepare.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163093 91177308-0d34-0410-b5e6-96231b3b80d8
This disables malloc-specific optimization when -fno-builtin (or -ffreestanding)
is specified. This has been a problem for a long time but became more severe
with the recent memory builtin improvements.
Since the memory builtin functions are used everywhere, this required passing
TLI in many places. This means that functions that now have an optional TLI
argument, like RecursivelyDeleteTriviallyDeadFunctions, won't remove dead
mallocs anymore if the TLI argument is missing. I've updated most passes to do
the right thing.
Fixes PR13694 and probably others.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162841 91177308-0d34-0410-b5e6-96231b3b80d8
and allow some optimizations to turn conditional branches into unconditional.
This commit adds a simple control-flow optimization which merges two consecutive
basic blocks which are connected by a single edge. This allows the codegen to
operate on larger basic blocks.
rdar://11973998
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161852 91177308-0d34-0410-b5e6-96231b3b80d8