explicitly split into stride-and-offset pairs. Also, add the
ability to track multiple post-increment loops on the same expression.
This refines the concept of "normalizing" SCEV expressions used for
to post-increment uses, and introduces a dedicated utility routine for
normalizing and denormalizing expressions.
This fixes the expansion of expressions which are post-increment users
of more than one loop at a time. More broadly, this takes LSR another
step closer to being able to reason about more than one loop at a time.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@100699 91177308-0d34-0410-b5e6-96231b3b80d8
undefs in branches/switches, we have two cases: a branch on a literal
undef or a branch on a symbolic value which is undef. If we have a
literal undef, the code was correct: forcing it to a constant is the
right thing to do.
If we have a branch on a symbolic value that is undef, we should force
the symbolic value to a constant, which then makes the successor block
live. Forcing the condition of the branch to being a constant isn't
safe if later paths become live and the value becomes overdefined. This
is the case that 'forcedconstant' is designed to handle, so just use it.
This fixes rdar://7765019 but there is no good testcase for this, the
one I have is too insane to be useful in the future.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@100478 91177308-0d34-0410-b5e6-96231b3b80d8
Added support for address spaces and added a isVolatile field to memcpy, memmove, and memset,
e.g., llvm.memcpy.i32(i8*, i8*, i32, i32) -> llvm.memcpy.p0i8.p0i8.i32(i8*, i8*, i32, i32, i1)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@100304 91177308-0d34-0410-b5e6-96231b3b80d8
exits the loop. With this information we can guarantee
the iteration count of the loop is bounded by the
compare. I think this xforms is finally safe now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@100285 91177308-0d34-0410-b5e6-96231b3b80d8
checker. Amusingly, we already had tests that we should
have rejects because they would be miscompiled in the
testsuite.
The remaining issue with this is that we don't check that
the branch causes us to exit the loop if it fails, so we
don't actually know if we remain in bounds.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@100284 91177308-0d34-0410-b5e6-96231b3b80d8
to a signed vs unsigned value depending on the sign of the
constant fp means that we can't distinguish between a
truly negative number and a positive number so large the
32nd bit is set. So, do don't this!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@100283 91177308-0d34-0410-b5e6-96231b3b80d8
the required validity checks in the first place, and supporting
a condition large enough to require the 32'nd bit isn't worth it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@100280 91177308-0d34-0410-b5e6-96231b3b80d8
this cleans up a bunch of code and also fixes several crashes and
miscompiles. More to come unfortunately, this optimization
is quite broken.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@100270 91177308-0d34-0410-b5e6-96231b3b80d8
(what was I thinking?) and there's also a problem with LCSSA. I'll try again
later with fixes.
--- Reverse-merging r100263 into '.':
U lib/Transforms/Utils/SSAUpdater.cpp
--- Reverse-merging r100177 into '.':
G lib/Transforms/Utils/SSAUpdater.cpp
--- Reverse-merging r100148 into '.':
G lib/Transforms/Utils/SSAUpdater.cpp
--- Reverse-merging r100147 into '.':
U include/llvm/Transforms/Utils/SSAUpdater.h
G lib/Transforms/Utils/SSAUpdater.cpp
--- Reverse-merging r100131 into '.':
G include/llvm/Transforms/Utils/SSAUpdater.h
G lib/Transforms/Utils/SSAUpdater.cpp
--- Reverse-merging r100130 into '.':
G lib/Transforms/Utils/SSAUpdater.cpp
--- Reverse-merging r100126 into '.':
G include/llvm/Transforms/Utils/SSAUpdater.h
G lib/Transforms/Utils/SSAUpdater.cpp
--- Reverse-merging r100050 into '.':
D test/Transforms/GVN/2010-03-31-RedundantPHIs.ll
--- Reverse-merging r100047 into '.':
G include/llvm/Transforms/Utils/SSAUpdater.h
G lib/Transforms/Utils/SSAUpdater.cpp
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@100264 91177308-0d34-0410-b5e6-96231b3b80d8
Added support for address spaces and added a isVolatile field to memcpy, memmove, and memset,
e.g., llvm.memcpy.i32(i8*, i8*, i32, i32) -> llvm.memcpy.p0i8.p0i8.i32(i8*, i8*, i32, i32, i1)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@100191 91177308-0d34-0410-b5e6-96231b3b80d8
in particular, they end up aligning strings at 16-byte boundaries, and
there's no way for GlobalOpt to check OptForSize.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@100172 91177308-0d34-0410-b5e6-96231b3b80d8
is necessary. Inherits from new templated baseclass CallSiteBase<>
which is highly customizable. Base CallSite on it too, in a configuration
that allows full mutation.
Adapt some call sites in analyses to employ ImmutableCallSite.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@100100 91177308-0d34-0410-b5e6-96231b3b80d8
PHIs. The previous algorithm was unable to reliably detect when existing
PHIs in a cycle can be reused. I'm still working on reducing a testcase.
Radar 7711900.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@100047 91177308-0d34-0410-b5e6-96231b3b80d8
generate wrong code pretty much anywhere AFAICT.
A case that hits the bug reproducibly is impossible,
but the situation was like this:
Addr = ...
Store -> Addr
Addr2 = GEP , 0, 0
Store -> Addr2
Handling the first store, the code changed replaced Addr
with a sunkaddr and deleted Addr, but not its table
entry. Code in OptimizedBlock replaced Addr2 with a
bitcast; if that happened to reuse the memory of Addr,
the old table entry was erroneously found when handling
the second store.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@100044 91177308-0d34-0410-b5e6-96231b3b80d8
e.g., llvm.memcpy.i32(i8*, i8*, i32, i32) -> llvm.memcpy.p0i8.p0i8.i32(i8*, i8*, i32, i32, i1)
A update of langref will occur in a subsequent checkin.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@99928 91177308-0d34-0410-b5e6-96231b3b80d8
pointer. There was also a SmallPtrSet whose settiness wasn't being used, so I
changed it to a SmallVector.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@99713 91177308-0d34-0410-b5e6-96231b3b80d8
of the previous load - it's usually important. For example, we don't want
to blindly turn an unaligned load into an aligned one.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@99699 91177308-0d34-0410-b5e6-96231b3b80d8
I have audited all getOperandNo calls now, fixing
hidden assumptions. CallSite related uglyness will
be eliminated successively.
Note this patch has a long and griveous history,
for all the back-and-forths have a look at
CallSite.h's log.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@99399 91177308-0d34-0410-b5e6-96231b3b80d8
for the noinline attribute, and make the inliner refuse to
inline a call site when the call site is marked noinline even
if the callee isn't. This fixes PR6682.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@99341 91177308-0d34-0410-b5e6-96231b3b80d8
so that the SCEVExpander doesn't retain a dangling pointer as its
insert position. The dangling pointer in this case wasn't ever used
to insert new instructions, but it was causing trouble with
SCEVExpander's code for automatically advancing its insert position
past debug intrinsics.
This fixes use-after-free errors that valgrind noticed in
test/Transforms/IndVarSimplify/2007-06-06-DeleteDanglesPtr.ll and
test/Transforms/IndVarSimplify/exit_value_tests.ll.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@99036 91177308-0d34-0410-b5e6-96231b3b80d8
This time I did a self-hosted bootstrap on Linux x86-64,
with no problems. Let's see how darwin 64-bit self-hosting
goes. At the first sign of failure I'll back this out.
Maybe the valgrind bots give me a hint of what may be wrong
(it at all).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@98957 91177308-0d34-0410-b5e6-96231b3b80d8
The Caller cost info would be reset everytime a callee was inlined. If the
caller has lots of calls and there is some mutual recursion going on, the
caller cost info could be calculated many times.
This patch reduces inliner runtime from 240s to 0.5s for a function with 20000
small function calls.
This is a more conservative version of r98089 that doesn't break the clang
test CodeGenCXX/temp-order.cpp. That test relies on rather extreme inlining
for constant folding.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@98099 91177308-0d34-0410-b5e6-96231b3b80d8
The Caller cost info would be reset everytime a callee was inlined. If the
caller has lots of calls and there is some mutual recursion going on, the
caller cost info could be calculated many times.
This patch reduces inliner runtime from 240s to 0.5s for a function with 20000
small function calls.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@98089 91177308-0d34-0410-b5e6-96231b3b80d8
This is a first step towards eliminating unncessary constructor checks in light weight DIDescriptor wrappers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97947 91177308-0d34-0410-b5e6-96231b3b80d8
out the remainder of the calls that we should lower in some way and
move the tests to the new correct directory. Fix up tests that are now
optimized more than they were before by -instcombine.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97875 91177308-0d34-0410-b5e6-96231b3b80d8
Log:
Transform @llvm.objectsize to integer if the argument is a result of malloc of known size.
Modified:
llvm/trunk/lib/Transforms/InstCombine/InstCombineCalls.cpp
llvm/trunk/test/Transforms/InstCombine/objsize.ll
It appears to be causing swb and nightly test failures.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97866 91177308-0d34-0410-b5e6-96231b3b80d8
can be used in more places. Add an argument for the TargetData that
most of them need. Update for the getInt8PtrTy() change. Should be
no functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97844 91177308-0d34-0410-b5e6-96231b3b80d8
parts of the cmp|cmp and cmp&cmp folding logic wasn't prepared for vectors
(unrelated to the bug but noticed while in the code) and the code was
*definitely* not safe to use by the (cast icmp)|(cast icmp) handling logic
that I added in r95855. Fix all this up by changing the various routines
to more consistently use IRBuilder and not pass in the I which had the wrong
type.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97801 91177308-0d34-0410-b5e6-96231b3b80d8
long test(long x) { return (x & 123124) | 3; }
Currently compiles to:
_test:
orl $3, %edi
movq %rdi, %rax
andq $123127, %rax
ret
This is because instruction and DAG combiners canonicalize
(or (and x, C), D) -> (and (or, D), (C | D))
However, this is only profitable if (C & D) != 0. It gets in the way of the
3-addressification because the input bits are known to be zero.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97616 91177308-0d34-0410-b5e6-96231b3b80d8
predecessors before returning. Otherwise, if multiple predecessor edges need
splitting, we only get one of them per iteration. This makes a small but
measurable compile time improvement with -enable-full-load-pre.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97521 91177308-0d34-0410-b5e6-96231b3b80d8
confusing the old MAT variable with the new GlobalType one. This caused
us to promote the @disp global pointer into:
@disp.body = internal global double*** undef
instead of:
@disp.body = internal global [3 x double**] undef
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97285 91177308-0d34-0410-b5e6-96231b3b80d8
which branch on undef to branch on a boolean constant for the edge
exiting the loop. This helps ScalarEvolution compute trip counts for
loops.
Teach ScalarEvolution to recognize single-value PHIs, when safe, and
ForgetSymbolicName to forget such single-value PHI nodes as apprpriate
in ForgetSymbolicName.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97126 91177308-0d34-0410-b5e6-96231b3b80d8
argument is non-null, pass it along to PHITranslateSubExpr so that it can
prefer using existing values that dominate the PredBB, instead of just
blindly picking the first equivalent value that it finds on a uselist.
Also when the DominatorTree is specified, have PHITranslateValue filter
out any result that does not dominate the PredBB. This is basically just
refactoring the check that used to be in GetAvailablePHITranslatedSubExpr
and also in GVN.
Despite my initial expectations, this change does not affect the results
of GVN for any testcases that I could find, but it should help compile time.
Before this change, if PHITranslateSubExpr picked a value that does not
dominate, PHITranslateWithInsertion would then insert a new value, which GVN
would later determine to be redundant and would replace. By picking a good
value to begin with, we save GVN the extra work of inserting and then
replacing a new value.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97010 91177308-0d34-0410-b5e6-96231b3b80d8
induction variable value and a loop-variant value, don't force the
insert position to be at the post-increment position, because it may
not be dominated by the loop-variant value. This fixes a
use-before-def problem noticed on PPC.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@96774 91177308-0d34-0410-b5e6-96231b3b80d8