assuming that loops are in canonical form, as ScalarEvolution doesn't
depend on LoopSimplify itself. Also, with indirectbr not all loops can
be simplified. This fixes PR7416.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106389 91177308-0d34-0410-b5e6-96231b3b80d8
scrounging through SCEVUnknown contents and SCEVNAryExpr operands;
instead just do a simple deterministic comparison of the precomputed
hash data.
Also, since this is more precise, it eliminates the need for the slow
N^2 duplicate detection code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105540 91177308-0d34-0410-b5e6-96231b3b80d8
Also, generalize ScalarEvolutions's min and max recognition to handle
some new forms of min and max that this change makes more common.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@102234 91177308-0d34-0410-b5e6-96231b3b80d8
true or false as its exit condition. These are usually eliminated by
SimplifyCFG, but the may be left around during a pass which wishes
to preserve the CFG.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@96683 91177308-0d34-0410-b5e6-96231b3b80d8
have trouble with an intermediate add overflowing. Also, be more conservative
about the case where the induction variable in an SLT loop exit can step past
the RHS of the SLT and overflow in a single step.
Make getSignedRange more aggressive, to recover for some common cases which
the above fixes pessimized.
This addresses rdar://7561161.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@94512 91177308-0d34-0410-b5e6-96231b3b80d8
where the induction variable has a non-unit stride, such as {0,+,2}, and
there are expressions such as {1,+,2} inside the loop formed with
or or add nsw operators.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@82151 91177308-0d34-0410-b5e6-96231b3b80d8
input filename so that opt doesn't print the input filename in the
output so that grep lines in the tests don't unintentionally match
strings in the input filename.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@81537 91177308-0d34-0410-b5e6-96231b3b80d8
This is a simple AliasAnalysis implementation which works by making
ScalarEvolution queries. ScalarEvolution has a more complete understanding
of arithmetic than BasicAA's collection of ad-hoc checks, so it handles
some cases that BasicAA misses, for example p[i] and p[i+1] within the
same iteration of a loop.
This is currently experimental. It may be that the main use for this pass
will be to help find cases where BasicAA can be profitably extended, or
to help in the development of the overall AliasAnalysis infrastructure,
however it's also possible that it could grow up to become a directly
useful pass.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80098 91177308-0d34-0410-b5e6-96231b3b80d8
the step value as unsigned, the start value and the addrec
itself still need to be treated as signed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@77078 91177308-0d34-0410-b5e6-96231b3b80d8
(x pred y) with more thorough code that does more complete canonicalization
before resorting to range checks. This helps it find more cases where
the canonicalized expressions match.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@76671 91177308-0d34-0410-b5e6-96231b3b80d8
than a wider one, before trying to compare their contents which will crash
if their sizes are different.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@74792 91177308-0d34-0410-b5e6-96231b3b80d8
blocks, and also exit blocks with multiple conditions (combined
with (bitwise) ands and ors). It's often infeasible to compute an
exact trip count in such cases, but a useful upper bound can often
be found.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73866 91177308-0d34-0410-b5e6-96231b3b80d8
If C is a single bit and the and gets analyzed as a truncate and
zero-extend, the xor can be represnted as an add.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73664 91177308-0d34-0410-b5e6-96231b3b80d8
that gets recognized with a SCEVZeroExtendExpr must be an And
with a low-bits mask. With r73540, this is no longer the case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73594 91177308-0d34-0410-b5e6-96231b3b80d8
integer and floating-point opcodes, introducing
FAdd, FSub, and FMul.
For now, the AsmParser, BitcodeReader, and IRBuilder all preserve
backwards compatability, and the Core LLVM APIs preserve backwards
compatibility for IR producers. Most front-ends won't need to change
immediately.
This implements the first step of the plan outlined here:
http://nondot.org/sabre/LLVMNotes/IntegerOverflow.txt
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72897 91177308-0d34-0410-b5e6-96231b3b80d8
add-recurrence to be exposed. Add a new SCEV folding rule to
help simplify expressions in the presence of these extra truncs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71264 91177308-0d34-0410-b5e6-96231b3b80d8