The IR
@foo = private constant i32 42
is valid, but before this patch we would produce an invalid MachO from it. It
was invalid because it would use an L label in a section where the liker needs
the labels in order to atomize it.
One way of fixing it would be to just reject this IR in the backend, but that
would not be very front end friendly.
What this patch does is use an 'l' prefix in sections that we know the linker
requires symbols for atomizing them. This allows frontends to just use
private and not worry about which sections they go to or how the linker handles
them.
One small issue with this strategy is that now a symbol name depends on the
section, which is not available before codegen. This is not a problem in
practice. The reason is that it only happens with private linkage, which will
be ignored by the non codegen users (llvm-nm and llvm-ar).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201608 91177308-0d34-0410-b5e6-96231b3b80d8
This should be a small build time improvement in general and fixes
the build on OS X with -DBUILD_SHARED_LIBS=ON.
The issue is that not all users are including GenericDomTreeConstruction.h,
causing undefined references when ld64 managed to hide the
linkonce_odr symbols.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201440 91177308-0d34-0410-b5e6-96231b3b80d8
An alias is always in the section of its aliasee and has the same alignment
(since it has the same address).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201354 91177308-0d34-0410-b5e6-96231b3b80d8
A const ObjectFile needs to be able to provide its name. For an IRObjectFile,
that means being able to call the mangler. Since each IRObjectFile can have
a different mangling, it is natural for them to contain a Mangler which is
therefore also const.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201113 91177308-0d34-0410-b5e6-96231b3b80d8
Ideally only those transform passes that run at -O0 remain enabled,
in reality we get as close as we reasonably can.
Passes are responsible for disabling themselves, it's not the job of
the pass manager to do it for them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200892 91177308-0d34-0410-b5e6-96231b3b80d8
I think this was just over-eagerness on my part. The analysis results
need to often be non-const because they need to (in some cases at least)
be updated by the transformation pass in order to remain correct. It
also makes lazy analyses (a common case) needlessly annoying to write in
order to make their entire state mutable.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200881 91177308-0d34-0410-b5e6-96231b3b80d8
Until now, when a path in a gcno file included a directory, we would
emit our .gcov file in that directory, whereas gcov always emits the
file in the current directory. In doing so, this implements gcov's
strange name-mangling -p flag, which is needed to avoid clobbering
files when two with the same name exist in different directories.
The path mangling is a bit ugly and only handles unix-like paths, but
it's simple, and it doesn't make any guesses as to how it should
behave outside of what gcov documents. If we decide this should be
cross platform later, we can consider the compatibility implications
then.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200754 91177308-0d34-0410-b5e6-96231b3b80d8
For some anachronistic reason we were producing {i32 0} for zero-length
debug info arrays.
(this change is paired with a Clang change and may cause temporary
buildbot noise)
Let's not.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200721 91177308-0d34-0410-b5e6-96231b3b80d8
Calls with inalloca are lowered by skipping all stores for arguments
passed in memory and the initial stack adjustment to allocate argument
memory.
Now the frontend is responsible for the memory layout, and the backend
doesn't have to do any work. As a result these changes are pretty
minimal.
Reviewers: echristo
Differential Revision: http://llvm-reviews.chandlerc.com/D2637
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200596 91177308-0d34-0410-b5e6-96231b3b80d8
MSVC always places the 'this' parameter for a method first. The
implicit 'sret' pointer for methods always comes second. We already
implement this for __thiscall by putting sret parameters on the stack,
but __cdecl methods require putting both parameters on the stack in
opposite order.
Using a special calling convention allows frontends to keep the sret
parameter first, which avoids breaking lots of assumptions in LLVM and
Clang.
Fixes PR15768 with the corresponding change in Clang.
Reviewers: ributzka, majnemer
Differential Revision: http://llvm-reviews.chandlerc.com/D2663
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200561 91177308-0d34-0410-b5e6-96231b3b80d8
This is a bit more convenient for some callers, but more importantly, it is
easier to implement correctly. Doing this removes the patching of already
printed data that was used for fastcall, fixing a crash with private fastcall
symbols.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200367 91177308-0d34-0410-b5e6-96231b3b80d8
When simplifycfg moves an instruction, it must drop metadata it doesn't know
is still valid with the preconditions changes. In particular, it must drop
the range and tbaa metadata.
The patch implements this with an utility function to drop all metadata not
in a white list.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200322 91177308-0d34-0410-b5e6-96231b3b80d8
different number of elements.
Bitcasts were passing with vectors of pointers with different number of
elements since the number of elements was checking
SrcTy->getVectorNumElements() == SrcTy->getVectorNumElements() which
isn't helpful. The addrspacecast was also wrong, but that case at least
is caught by the verifier. Refactor bitcast and addrspacecast handling
in castIsValid to be more readable and fix this problem.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199821 91177308-0d34-0410-b5e6-96231b3b80d8
various opt verifier commandline options.
Mostly mechanical wiring of the verifier to the new pass manager.
Exercises one of the more unusual aspects of it -- a pass can be either
a module or function pass interchangably. If this is ever problematic,
we can make things more constrained, but for things like the verifier
where there is an "obvious" applicability at both levels, it seems
convenient.
This is the next-to-last piece of basic functionality left to make the
opt commandline driving of the new pass manager minimally functional for
testing and further development. There is still a lot to be done there
(notably the factoring into .def files to kill the current boilerplate
code) but it is relatively uninteresting. The only interesting bit left
for minimal functionality is supporting the registration of analyses.
I'm planning on doing that on top of the .def file switch mostly because
the boilerplate for the analyses would be significantly worse.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199646 91177308-0d34-0410-b5e6-96231b3b80d8
This makes the 'verifyFunction' and 'verifyModule' functions totally
independent operations on the LLVM IR. It also cleans up their API a bit
by lifting the abort behavior into their clients and just using an
optional raw_ostream parameter to control printing.
The implementation of the verifier is now just an InstVisitor with no
multiple inheritance. It also is significantly more const-correct, and
hides the const violations internally. The two layers that force us to
break const correctness are building a DomTree and dispatching through
the InstVisitor.
A new VerifierPass is used to implement the legacy pass manager
interface in terms of the other pieces.
The error messages produced may be slightly different now, and we may
have slightly different short circuiting behavior with different usage
models of the verifier, but generally everything works equivalently and
this unblocks wiring the verifier up to the new pass manager.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199569 91177308-0d34-0410-b5e6-96231b3b80d8
one, but not create one. This is useful in the verifier when we want to
query the constant if it exists but not create one. To be used in an
upcoming commit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199568 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
The only current use of this flag is to mark the alloca as dynamic, even
if its in the entry block. The stack adjustment for the alloca can
never be folded into the prologue because the call may clear it and it
has to be allocated at the top of the stack.
Reviewers: majnemer
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2571
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199525 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds two new target-independent calling conventions for runtime
calls - PreserveMost and PreserveAll.
The target-specific implementation for X86-64 is defined as following:
- Arguments are passed as for the default C calling convention
- The same applies for the return value(s)
- PreserveMost preserves all GPRs - except R11
- PreserveAll preserves all GPRs and all XMMs/YMMs - except R11
Reviewed by Lang and Philip
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199508 91177308-0d34-0410-b5e6-96231b3b80d8
and tweak comments prior to more invasive surgery. Also clean up some
other non-doxygen comments, and run clang-format over the parts that are
going to change dramatically in subsequent commits so that those don't
get cluttered with formatting changes.
No functionality changed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199489 91177308-0d34-0410-b5e6-96231b3b80d8
the verifier after ensuring the CFG is at least usefully formed.
This fixes a number of problems:
1) The PreVerifier was missing the controls the Verifier provides over
*how* an invalid module is handled -- it just aborted the program!
Now it uses the same logic as the Verifier which is significantly
more library-friendly.
2) The DominatorTree used previously could have been cached and not
updated due to bugs in prior passes and we would silently use the
stale tree. This could cause dominance errors to not be as quickly
diagnosed.
3) We can now (in the next patch) pull the functionality of the verifier
apart from the pass infrastructure so that you can verify IR without
having any form of pass manager. This in turn frees the code to share
logic between old and new pass manager variants.
Along the way I fixed at least one annoying bug -- the state for
'Broken' wasn't being cleared from run to run causing all functions
visited after the first broken function to be marked as broken
regardless of whether *they* were a problem. Fortunately, I don't really
know much of a way to observe this peculiarity.
In case folks are worried about the runtime cost, its negligible.
I looked at running the entire regression test suite (which should be
a relatively good use of the verifier) before and after but was unable
to even measure the time spent on the verifier and there was no
regresion from before to after. I checked both with debug builds and
optimized builds.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199487 91177308-0d34-0410-b5e6-96231b3b80d8
This makes things a lot easier, because we can now talk about the
"argument allocation", which allocates all the memory for the call in
one shot.
The only functional change is to the verifier for a feature that hasn't
shipped yet.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199434 91177308-0d34-0410-b5e6-96231b3b80d8
When registering a pass, a pass can now specify a second construct that takes as
argument a pointer to TargetMachine.
The PassInfo class has been updated to reflect that possibility.
If such a constructor exists opt will use it instead of the default constructor
when instantiating the pass.
Since such IR passes are supposed to be rare, no specific support has been
added to this commit to allow an easy registration of such a pass.
In other words, for such pass, the initialization function has to be
hand-written (see CodeGenPrepare for instance).
Now, codegenprepare can be tested using opt:
opt -codegenprepare -mtriple=mytriple input.ll
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199430 91177308-0d34-0410-b5e6-96231b3b80d8
Representing dllexport/dllimport as distinct linkage types prevents using
these attributes on templates and inline functions.
Instead of introducing further mixed linkage types to include linkonce and
weak ODR, the old import/export linkage types are replaced with a new
separate visibility-like specifier:
define available_externally dllimport void @f() {}
@Var = dllexport global i32 1, align 4
Linkage for dllexported globals and functions is now equal to their linkage
without dllexport. Imported globals and functions must be either
declarations with external linkage, or definitions with
AvailableExternallyLinkage.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199218 91177308-0d34-0410-b5e6-96231b3b80d8
Representing dllexport/dllimport as distinct linkage types prevents using
these attributes on templates and inline functions.
Instead of introducing further mixed linkage types to include linkonce and
weak ODR, the old import/export linkage types are replaced with a new
separate visibility-like specifier:
define available_externally dllimport void @f() {}
@Var = dllexport global i32 1, align 4
Linkage for dllexported globals and functions is now equal to their linkage
without dllexport. Imported globals and functions must be either
declarations with external linkage, or definitions with
AvailableExternallyLinkage.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199204 91177308-0d34-0410-b5e6-96231b3b80d8
fastcall requires @ as global prefix instead of _ but getNameWithPrefix
wrongly assumes the OutName buffer is empty and replaces at index 0.
For imported functions this buffer is pre-filled with "__imp_" resulting
in broken "@_imp_foo@0" mangling.
Instead replace at the proper index. We also never have to prepend the
@-prefix because this fastcall mangling is only used on 32-bit Windows
targets which have _ has global prefix.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199203 91177308-0d34-0410-b5e6-96231b3b80d8
We need to ensure that StackSlotColoring.cpp does not reuse stack
spill slots in functions that call "returns_twice" functions such as
setjmp(), otherwise this can lead to miscompiled code, because a stack
slot would be clobbered when it's still live.
This was already handled correctly for functions that call setjmp()
(though this wasn't covered by a test), but not for functions that
invoke setjmp().
We fix this by changing callsFunctionThatReturnsTwice() to check for
invoke instructions.
This fixes PR18244.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199180 91177308-0d34-0410-b5e6-96231b3b80d8
can be used by both the new pass manager and the old.
This removes it from any of the virtual mess of the pass interfaces and
lets it derive cleanly from the DominatorTreeBase<> template. In turn,
tons of boilerplate interface can be nuked and it turns into a very
straightforward extension of the base DominatorTree interface.
The old analysis pass is now a simple wrapper. The names and style of
this split should match the split between CallGraph and
CallGraphWrapperPass. All of the users of DominatorTree have been
updated to match using many of the same tricks as with CallGraph. The
goal is that the common type remains the resulting DominatorTree rather
than the pass. This will make subsequent work toward the new pass
manager significantly easier.
Also in numerous places things became cleaner because I switched from
re-running the pass (!!! mid way through some other passes run!!!) to
directly recomputing the domtree.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199104 91177308-0d34-0410-b5e6-96231b3b80d8
trees into the Support library.
These are all expressed in terms of the generic GraphTraits and CFG,
with no reliance on any concrete IR types. Putting them in support
clarifies that and makes the fact that the static analyzer in Clang uses
them much more sane. When moving the Dominators.h file into the IR
library I claimed that this was the right home for it but not something
I planned to work on. Oops.
So why am I doing this? It happens to be one step toward breaking the
requirement that IR verification can only be performed from inside of
a pass context, which completely blocks the implementation of
verification for the new pass manager infrastructure. Fixing it will
also allow removing the concept of the "preverify" step (WTF???) and
allow the verifier to cleanly flag functions which fail verification in
a way that precludes even computing dominance information. Currently,
that results in a fatal error even when you ask the verifier to not
fatally error. It's awesome like that.
The yak shaving will continue...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199095 91177308-0d34-0410-b5e6-96231b3b80d8
directory. These passes are already defined in the IR library, and it
doesn't make any sense to have the headers in Analysis.
Long term, I think there is going to be a much better way to divide
these matters. The dominators code should be fully separated into the
abstract graph algorithm and have that put in Support where it becomes
obvious that evn Clang's CFGBlock's can use it. Then the verifier can
manually construct dominance information from the Support-driven
interface while the Analysis library can provide a pass which both
caches, reconstructs, and supports a nice update API.
But those are very long term, and so I don't want to leave the really
confusing structure until that day arrives.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199082 91177308-0d34-0410-b5e6-96231b3b80d8
This implements the legacy passes in terms of the new ones. It adds
basic testing using explicit runs of the passes. Next up will be wiring
the basic output mechanism of opt up when the new pass manager is
engaged unless bitcode writing is requested.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199049 91177308-0d34-0410-b5e6-96231b3b80d8
API is exposed.
This removes the support for deleting the ostream, switches the member
and constructor order arround to be consistent with the creation
routines, and switches to using references.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199047 91177308-0d34-0410-b5e6-96231b3b80d8
Nothing was using the ability of the pass to delete the raw_ostream it
printed to, and nothing was trying to pass it a pointer to the
raw_ostream. Also, the function variant had a different order of
arguments from all of the others which was just really confusing. Now
the interface accepts a reference, doesn't offer to delete it, and uses
a consistent order. The implementation of the printing passes haven't
been updated with this simplification, this is just the API switch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199044 91177308-0d34-0410-b5e6-96231b3b80d8