//===-- Mos6502Instr64Bit.td - 64-bit instructions for Mos6502 Target ---------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains instruction definitions and patterns needed for 64-bit // code generation on MOS6502 v9. // // Some MOS6502 v9 instructions are defined in Mos6502InstrInfo.td because they can // also be used in 32-bit code running on a MOS6502 v9 CPU. // //===----------------------------------------------------------------------===// let Predicates = [Is64Bit] in { // The same integer registers are used for i32 and i64 values. // When registers hold i32 values, the high bits are don't care. // This give us free trunc and anyext. def : Pat<(i64 (anyext i32:$val)), (COPY_TO_REGCLASS $val, I64Regs)>; def : Pat<(i32 (trunc i64:$val)), (COPY_TO_REGCLASS $val, IntRegs)>; } // Predicates = [Is64Bit] //===----------------------------------------------------------------------===// // 64-bit Shift Instructions. //===----------------------------------------------------------------------===// // // The 32-bit shift instructions are still available. The left shift srl // instructions shift all 64 bits, but it only accepts a 5-bit shift amount. // // The srl instructions only shift the low 32 bits and clear the high 32 bits. // Finally, sra shifts the low 32 bits and sign-extends to 64 bits. let Predicates = [Is64Bit] in { def : Pat<(i64 (zext i32:$val)), (SRLri $val, 0)>; def : Pat<(i64 (sext i32:$val)), (SRAri $val, 0)>; def : Pat<(i64 (and i64:$val, 0xffffffff)), (SRLri $val, 0)>; def : Pat<(i64 (sext_inreg i64:$val, i32)), (SRAri $val, 0)>; defm SLLX : F3_S<"sllx", 0b100101, 1, shl, i64, I64Regs>; defm SRLX : F3_S<"srlx", 0b100110, 1, srl, i64, I64Regs>; defm SRAX : F3_S<"srax", 0b100111, 1, sra, i64, I64Regs>; } // Predicates = [Is64Bit] //===----------------------------------------------------------------------===// // 64-bit Immediates. //===----------------------------------------------------------------------===// // // All 32-bit immediates can be materialized with sethi+or, but 64-bit // immediates may require more code. There may be a point where it is // preferable to use a constant pool load instead, depending on the // microarchitecture. // Single-instruction patterns. // The ALU instructions want their simm13 operands as i32 immediates. def as_i32imm : SDNodeXFormgetTargetConstant(N->getSExtValue(), SDLoc(N), MVT::i32); }]>; def : Pat<(i64 simm13:$val), (ORri (i64 G0), (as_i32imm $val))>; def : Pat<(i64 SETHIimm:$val), (SETHIi (HI22 $val))>; // Double-instruction patterns. // All unsigned i32 immediates can be handled by sethi+or. def uimm32 : PatLeaf<(imm), [{ return isUInt<32>(N->getZExtValue()); }]>; def : Pat<(i64 uimm32:$val), (ORri (SETHIi (HI22 $val)), (LO10 $val))>, Requires<[Is64Bit]>; // All negative i33 immediates can be handled by sethi+xor. def nimm33 : PatLeaf<(imm), [{ int64_t Imm = N->getSExtValue(); return Imm < 0 && isInt<33>(Imm); }]>; // Bits 10-31 inverted. Same as assembler's %hix. def HIX22 : SDNodeXFormgetZExtValue() >> 10) & ((1u << 22) - 1); return CurDAG->getTargetConstant(Val, SDLoc(N), MVT::i32); }]>; // Bits 0-9 with ones in bits 10-31. Same as assembler's %lox. def LOX10 : SDNodeXFormgetTargetConstant(~(~N->getZExtValue() & 0x3ff), SDLoc(N), MVT::i32); }]>; def : Pat<(i64 nimm33:$val), (XORri (SETHIi (HIX22 $val)), (LOX10 $val))>, Requires<[Is64Bit]>; // More possible patterns: // // (sllx sethi, n) // (sllx simm13, n) // // 3 instrs: // // (xor (sllx sethi), simm13) // (sllx (xor sethi, simm13)) // // 4 instrs: // // (or sethi, (sllx sethi)) // (xnor sethi, (sllx sethi)) // // 5 instrs: // // (or (sllx sethi), (or sethi, simm13)) // (xnor (sllx sethi), (or sethi, simm13)) // (or (sllx sethi), (sllx sethi)) // (xnor (sllx sethi), (sllx sethi)) // // Worst case is 6 instrs: // // (or (sllx (or sethi, simmm13)), (or sethi, simm13)) // Bits 42-63, same as assembler's %hh. def HH22 : SDNodeXFormgetZExtValue() >> 42) & ((1u << 22) - 1); return CurDAG->getTargetConstant(Val, SDLoc(N), MVT::i32); }]>; // Bits 32-41, same as assembler's %hm. def HM10 : SDNodeXFormgetZExtValue() >> 32) & ((1u << 10) - 1); return CurDAG->getTargetConstant(Val, SDLoc(N), MVT::i32); }]>; def : Pat<(i64 imm:$val), (ORrr (SLLXri (ORri (SETHIi (HH22 $val)), (HM10 $val)), (i32 32)), (ORri (SETHIi (HI22 $val)), (LO10 $val)))>, Requires<[Is64Bit]>; //===----------------------------------------------------------------------===// // 64-bit Integer Arithmetic and Logic. //===----------------------------------------------------------------------===// let Predicates = [Is64Bit] in { // Register-register instructions. let isCodeGenOnly = 1 in { defm ANDX : F3_12<"and", 0b000001, and, I64Regs, i64, i64imm>; defm ORX : F3_12<"or", 0b000010, or, I64Regs, i64, i64imm>; defm XORX : F3_12<"xor", 0b000011, xor, I64Regs, i64, i64imm>; def ANDXNrr : F3_1<2, 0b000101, (outs I64Regs:$dst), (ins I64Regs:$b, I64Regs:$c), "andn $b, $c, $dst", [(set i64:$dst, (and i64:$b, (not i64:$c)))]>; def ORXNrr : F3_1<2, 0b000110, (outs I64Regs:$dst), (ins I64Regs:$b, I64Regs:$c), "orn $b, $c, $dst", [(set i64:$dst, (or i64:$b, (not i64:$c)))]>; def XNORXrr : F3_1<2, 0b000111, (outs I64Regs:$dst), (ins I64Regs:$b, I64Regs:$c), "xnor $b, $c, $dst", [(set i64:$dst, (not (xor i64:$b, i64:$c)))]>; defm ADDX : F3_12<"add", 0b000000, add, I64Regs, i64, i64imm>; defm SUBX : F3_12<"sub", 0b000100, sub, I64Regs, i64, i64imm>; def TLS_ADDXrr : F3_1<2, 0b000000, (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2, TLSSym:$sym), "add $rs1, $rs2, $rd, $sym", [(set i64:$rd, (tlsadd i64:$rs1, i64:$rs2, tglobaltlsaddr:$sym))]>; // "LEA" form of add def LEAX_ADDri : F3_2<2, 0b000000, (outs I64Regs:$dst), (ins MEMri:$addr), "add ${addr:arith}, $dst", [(set iPTR:$dst, ADDRri:$addr)]>; } def : Pat<(SPcmpicc i64:$a, i64:$b), (CMPrr $a, $b)>; def : Pat<(SPcmpicc i64:$a, (i64 simm13:$b)), (CMPri $a, (as_i32imm $b))>; def : Pat<(ctpop i64:$src), (POPCrr $src)>; } // Predicates = [Is64Bit] //===----------------------------------------------------------------------===// // 64-bit Integer Multiply and Divide. //===----------------------------------------------------------------------===// let Predicates = [Is64Bit] in { def MULXrr : F3_1<2, 0b001001, (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2), "mulx $rs1, $rs2, $rd", [(set i64:$rd, (mul i64:$rs1, i64:$rs2))]>; def MULXri : F3_2<2, 0b001001, (outs IntRegs:$rd), (ins IntRegs:$rs1, i64imm:$simm13), "mulx $rs1, $simm13, $rd", [(set i64:$rd, (mul i64:$rs1, (i64 simm13:$simm13)))]>; // Division can trap. let hasSideEffects = 1 in { def SDIVXrr : F3_1<2, 0b101101, (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2), "sdivx $rs1, $rs2, $rd", [(set i64:$rd, (sdiv i64:$rs1, i64:$rs2))]>; def SDIVXri : F3_2<2, 0b101101, (outs IntRegs:$rd), (ins IntRegs:$rs1, i64imm:$simm13), "sdivx $rs1, $simm13, $rd", [(set i64:$rd, (sdiv i64:$rs1, (i64 simm13:$simm13)))]>; def UDIVXrr : F3_1<2, 0b001101, (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2), "udivx $rs1, $rs2, $rd", [(set i64:$rd, (udiv i64:$rs1, i64:$rs2))]>; def UDIVXri : F3_2<2, 0b001101, (outs IntRegs:$rd), (ins IntRegs:$rs1, i64imm:$simm13), "udivx $rs1, $simm13, $rd", [(set i64:$rd, (udiv i64:$rs1, (i64 simm13:$simm13)))]>; } // hasSideEffects = 1 } // Predicates = [Is64Bit] //===----------------------------------------------------------------------===// // 64-bit Loads and Stores. //===----------------------------------------------------------------------===// // // All the 32-bit loads and stores are available. The extending loads are sign // or zero-extending to 64 bits. The LDrr and LDri instructions load 32 bits // zero-extended to i64. Their mnemonic is lduw in MOS6502 v9 (Load Unsigned // Word). // // MOS6502 v9 adds 64-bit loads as well as a sign-extending ldsw i32 loads. let Predicates = [Is64Bit] in { // 64-bit loads. let DecoderMethod = "DecodeLoadInt" in defm LDX : Load<"ldx", 0b001011, load, I64Regs, i64>; let mayLoad = 1, isCodeGenOnly = 1, isAsmParserOnly = 1 in def TLS_LDXrr : F3_1<3, 0b001011, (outs IntRegs:$dst), (ins MEMrr:$addr, TLSSym:$sym), "ldx [$addr], $dst, $sym", [(set i64:$dst, (tlsld ADDRrr:$addr, tglobaltlsaddr:$sym))]>; // Extending loads to i64. def : Pat<(i64 (zextloadi1 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>; def : Pat<(i64 (zextloadi1 ADDRri:$addr)), (LDUBri ADDRri:$addr)>; def : Pat<(i64 (extloadi1 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>; def : Pat<(i64 (extloadi1 ADDRri:$addr)), (LDUBri ADDRri:$addr)>; def : Pat<(i64 (zextloadi8 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>; def : Pat<(i64 (zextloadi8 ADDRri:$addr)), (LDUBri ADDRri:$addr)>; def : Pat<(i64 (extloadi8 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>; def : Pat<(i64 (extloadi8 ADDRri:$addr)), (LDUBri ADDRri:$addr)>; def : Pat<(i64 (sextloadi8 ADDRrr:$addr)), (LDSBrr ADDRrr:$addr)>; def : Pat<(i64 (sextloadi8 ADDRri:$addr)), (LDSBri ADDRri:$addr)>; def : Pat<(i64 (zextloadi16 ADDRrr:$addr)), (LDUHrr ADDRrr:$addr)>; def : Pat<(i64 (zextloadi16 ADDRri:$addr)), (LDUHri ADDRri:$addr)>; def : Pat<(i64 (extloadi16 ADDRrr:$addr)), (LDUHrr ADDRrr:$addr)>; def : Pat<(i64 (extloadi16 ADDRri:$addr)), (LDUHri ADDRri:$addr)>; def : Pat<(i64 (sextloadi16 ADDRrr:$addr)), (LDSHrr ADDRrr:$addr)>; def : Pat<(i64 (sextloadi16 ADDRri:$addr)), (LDSHri ADDRri:$addr)>; def : Pat<(i64 (zextloadi32 ADDRrr:$addr)), (LDrr ADDRrr:$addr)>; def : Pat<(i64 (zextloadi32 ADDRri:$addr)), (LDri ADDRri:$addr)>; def : Pat<(i64 (extloadi32 ADDRrr:$addr)), (LDrr ADDRrr:$addr)>; def : Pat<(i64 (extloadi32 ADDRri:$addr)), (LDri ADDRri:$addr)>; // Sign-extending load of i32 into i64 is a new MOS6502 v9 instruction. let DecoderMethod = "DecodeLoadInt" in defm LDSW : Load<"ldsw", 0b001000, sextloadi32, I64Regs, i64>; // 64-bit stores. let DecoderMethod = "DecodeStoreInt" in defm STX : Store<"stx", 0b001110, store, I64Regs, i64>; // Truncating stores from i64 are identical to the i32 stores. def : Pat<(truncstorei8 i64:$src, ADDRrr:$addr), (STBrr ADDRrr:$addr, $src)>; def : Pat<(truncstorei8 i64:$src, ADDRri:$addr), (STBri ADDRri:$addr, $src)>; def : Pat<(truncstorei16 i64:$src, ADDRrr:$addr), (STHrr ADDRrr:$addr, $src)>; def : Pat<(truncstorei16 i64:$src, ADDRri:$addr), (STHri ADDRri:$addr, $src)>; def : Pat<(truncstorei32 i64:$src, ADDRrr:$addr), (STrr ADDRrr:$addr, $src)>; def : Pat<(truncstorei32 i64:$src, ADDRri:$addr), (STri ADDRri:$addr, $src)>; // store 0, addr -> store %g0, addr def : Pat<(store (i64 0), ADDRrr:$dst), (STXrr ADDRrr:$dst, (i64 G0))>; def : Pat<(store (i64 0), ADDRri:$dst), (STXri ADDRri:$dst, (i64 G0))>; } // Predicates = [Is64Bit] //===----------------------------------------------------------------------===// // 64-bit Conditionals. //===----------------------------------------------------------------------===// // // Flag-setting instructions like subcc and addcc set both icc and xcc flags. // The icc flags correspond to the 32-bit result, and the xcc are for the // full 64-bit result. // // We reuse CMPICC SDNodes for compares, but use new BRXCC branch nodes for // 64-bit compares. See LowerBR_CC. let Predicates = [Is64Bit] in { let Uses = [ICC], cc = 0b10 in defm BPX : IPredBranch<"%xcc", [(SPbrxcc bb:$imm19, imm:$cond)]>; // Conditional moves on %xcc. let Uses = [ICC], Constraints = "$f = $rd" in { let intcc = 1, cc = 0b10 in { def MOVXCCrr : F4_1<0b101100, (outs IntRegs:$rd), (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond), "mov$cond %xcc, $rs2, $rd", [(set i32:$rd, (SPselectxcc i32:$rs2, i32:$f, imm:$cond))]>; def MOVXCCri : F4_2<0b101100, (outs IntRegs:$rd), (ins i32imm:$simm11, IntRegs:$f, CCOp:$cond), "mov$cond %xcc, $simm11, $rd", [(set i32:$rd, (SPselectxcc simm11:$simm11, i32:$f, imm:$cond))]>; } // cc let intcc = 1, opf_cc = 0b10 in { def FMOVS_XCC : F4_3<0b110101, 0b000001, (outs FPRegs:$rd), (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond), "fmovs$cond %xcc, $rs2, $rd", [(set f32:$rd, (SPselectxcc f32:$rs2, f32:$f, imm:$cond))]>; def FMOVD_XCC : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd), (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond), "fmovd$cond %xcc, $rs2, $rd", [(set f64:$rd, (SPselectxcc f64:$rs2, f64:$f, imm:$cond))]>; def FMOVQ_XCC : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd), (ins QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond), "fmovq$cond %xcc, $rs2, $rd", [(set f128:$rd, (SPselectxcc f128:$rs2, f128:$f, imm:$cond))]>; } // opf_cc } // Uses, Constraints // Branch On integer register with Prediction (BPr). let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in multiclass BranchOnReg cond, string OpcStr> { def napt : F2_4; def apt : F2_4; def napn : F2_4; def apn : F2_4; } multiclass bpr_alias { def : InstAlias; def : InstAlias; } defm BPZ : BranchOnReg<0b001, "brz">; defm BPLEZ : BranchOnReg<0b010, "brlez">; defm BPLZ : BranchOnReg<0b011, "brlz">; defm BPNZ : BranchOnReg<0b101, "brnz">; defm BPGZ : BranchOnReg<0b110, "brgz">; defm BPGEZ : BranchOnReg<0b111, "brgez">; defm : bpr_alias<"brz", BPZnapt, BPZapt >; defm : bpr_alias<"brlez", BPLEZnapt, BPLEZapt>; defm : bpr_alias<"brlz", BPLZnapt, BPLZapt >; defm : bpr_alias<"brnz", BPNZnapt, BPNZapt >; defm : bpr_alias<"brgz", BPGZnapt, BPGZapt >; defm : bpr_alias<"brgez", BPGEZnapt, BPGEZapt>; // Move integer register on register condition (MOVr). multiclass MOVR< bits<3> rcond, string OpcStr> { def rr : F4_4r<0b101111, 0b00000, rcond, (outs I64Regs:$rd), (ins I64Regs:$rs1, IntRegs:$rs2), !strconcat(OpcStr, " $rs1, $rs2, $rd"), []>; def ri : F4_4i<0b101111, rcond, (outs I64Regs:$rd), (ins I64Regs:$rs1, i64imm:$simm10), !strconcat(OpcStr, " $rs1, $simm10, $rd"), []>; } defm MOVRRZ : MOVR<0b001, "movrz">; defm MOVRLEZ : MOVR<0b010, "movrlez">; defm MOVRLZ : MOVR<0b011, "movrlz">; defm MOVRNZ : MOVR<0b101, "movrnz">; defm MOVRGZ : MOVR<0b110, "movrgz">; defm MOVRGEZ : MOVR<0b111, "movrgez">; // Move FP register on integer register condition (FMOVr). multiclass FMOVR rcond, string OpcStr> { def S : F4_4r<0b110101, 0b00101, rcond, (outs FPRegs:$rd), (ins I64Regs:$rs1, FPRegs:$rs2), !strconcat(!strconcat("fmovrs", OpcStr)," $rs1, $rs2, $rd"), []>; def D : F4_4r<0b110101, 0b00110, rcond, (outs FPRegs:$rd), (ins I64Regs:$rs1, FPRegs:$rs2), !strconcat(!strconcat("fmovrd", OpcStr)," $rs1, $rs2, $rd"), []>; def Q : F4_4r<0b110101, 0b00111, rcond, (outs FPRegs:$rd), (ins I64Regs:$rs1, FPRegs:$rs2), !strconcat(!strconcat("fmovrq", OpcStr)," $rs1, $rs2, $rd"), []>, Requires<[HasHardQuad]>; } let Predicates = [HasV9] in { defm FMOVRZ : FMOVR<0b001, "z">; defm FMOVRLEZ : FMOVR<0b010, "lez">; defm FMOVRLZ : FMOVR<0b011, "lz">; defm FMOVRNZ : FMOVR<0b101, "nz">; defm FMOVRGZ : FMOVR<0b110, "gz">; defm FMOVRGEZ : FMOVR<0b111, "gez">; } //===----------------------------------------------------------------------===// // 64-bit Floating Point Conversions. //===----------------------------------------------------------------------===// let Predicates = [Is64Bit] in { def FXTOS : F3_3u<2, 0b110100, 0b010000100, (outs FPRegs:$rd), (ins DFPRegs:$rs2), "fxtos $rs2, $rd", [(set FPRegs:$rd, (SPxtof DFPRegs:$rs2))]>; def FXTOD : F3_3u<2, 0b110100, 0b010001000, (outs DFPRegs:$rd), (ins DFPRegs:$rs2), "fxtod $rs2, $rd", [(set DFPRegs:$rd, (SPxtof DFPRegs:$rs2))]>; def FXTOQ : F3_3u<2, 0b110100, 0b010001100, (outs QFPRegs:$rd), (ins DFPRegs:$rs2), "fxtoq $rs2, $rd", [(set QFPRegs:$rd, (SPxtof DFPRegs:$rs2))]>, Requires<[HasHardQuad]>; def FSTOX : F3_3u<2, 0b110100, 0b010000001, (outs DFPRegs:$rd), (ins FPRegs:$rs2), "fstox $rs2, $rd", [(set DFPRegs:$rd, (SPftox FPRegs:$rs2))]>; def FDTOX : F3_3u<2, 0b110100, 0b010000010, (outs DFPRegs:$rd), (ins DFPRegs:$rs2), "fdtox $rs2, $rd", [(set DFPRegs:$rd, (SPftox DFPRegs:$rs2))]>; def FQTOX : F3_3u<2, 0b110100, 0b010000011, (outs DFPRegs:$rd), (ins QFPRegs:$rs2), "fqtox $rs2, $rd", [(set DFPRegs:$rd, (SPftox QFPRegs:$rs2))]>, Requires<[HasHardQuad]>; } // Predicates = [Is64Bit] def : Pat<(SPselectxcc i64:$t, i64:$f, imm:$cond), (MOVXCCrr $t, $f, imm:$cond)>; def : Pat<(SPselectxcc (i64 simm11:$t), i64:$f, imm:$cond), (MOVXCCri (as_i32imm $t), $f, imm:$cond)>; def : Pat<(SPselecticc i64:$t, i64:$f, imm:$cond), (MOVICCrr $t, $f, imm:$cond)>; def : Pat<(SPselecticc (i64 simm11:$t), i64:$f, imm:$cond), (MOVICCri (as_i32imm $t), $f, imm:$cond)>; def : Pat<(SPselectfcc i64:$t, i64:$f, imm:$cond), (MOVFCCrr $t, $f, imm:$cond)>; def : Pat<(SPselectfcc (i64 simm11:$t), i64:$f, imm:$cond), (MOVFCCri (as_i32imm $t), $f, imm:$cond)>; } // Predicates = [Is64Bit] // 64 bit SETHI let Predicates = [Is64Bit], isCodeGenOnly = 1 in { def SETHIXi : F2_1<0b100, (outs IntRegs:$rd), (ins i64imm:$imm22), "sethi $imm22, $rd", [(set i64:$rd, SETHIimm:$imm22)]>; } // ATOMICS. let Predicates = [Is64Bit], Constraints = "$swap = $rd", asi = 0b10000000 in { def CASXrr: F3_1_asi<3, 0b111110, (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2, I64Regs:$swap), "casx [$rs1], $rs2, $rd", [(set i64:$rd, (atomic_cmp_swap i64:$rs1, i64:$rs2, i64:$swap))]>; } // Predicates = [Is64Bit], Constraints = ... let Predicates = [Is64Bit] in { def : Pat<(atomic_fence imm, imm), (MEMBARi 0xf)>; // atomic_load_64 addr -> load addr def : Pat<(i64 (atomic_load ADDRrr:$src)), (LDXrr ADDRrr:$src)>; def : Pat<(i64 (atomic_load ADDRri:$src)), (LDXri ADDRri:$src)>; // atomic_store_64 val, addr -> store val, addr def : Pat<(atomic_store ADDRrr:$dst, i64:$val), (STXrr ADDRrr:$dst, $val)>; def : Pat<(atomic_store ADDRri:$dst, i64:$val), (STXri ADDRri:$dst, $val)>; } // Predicates = [Is64Bit] let usesCustomInserter = 1, hasCtrlDep = 1, mayLoad = 1, mayStore = 1, Defs = [ICC] in multiclass AtomicRMW { def _32 : Pseudo<(outs IntRegs:$rd), (ins ptr_rc:$addr, IntRegs:$rs2), "", [(set i32:$rd, (op32 iPTR:$addr, i32:$rs2))]>; let Predicates = [Is64Bit] in def _64 : Pseudo<(outs I64Regs:$rd), (ins ptr_rc:$addr, I64Regs:$rs2), "", [(set i64:$rd, (op64 iPTR:$addr, i64:$rs2))]>; } defm ATOMIC_LOAD_ADD : AtomicRMW; defm ATOMIC_LOAD_SUB : AtomicRMW; defm ATOMIC_LOAD_AND : AtomicRMW; defm ATOMIC_LOAD_OR : AtomicRMW; defm ATOMIC_LOAD_XOR : AtomicRMW; defm ATOMIC_LOAD_NAND : AtomicRMW; defm ATOMIC_LOAD_MIN : AtomicRMW; defm ATOMIC_LOAD_MAX : AtomicRMW; defm ATOMIC_LOAD_UMIN : AtomicRMW; defm ATOMIC_LOAD_UMAX : AtomicRMW; // There is no 64-bit variant of SWAP, so use a pseudo. let usesCustomInserter = 1, hasCtrlDep = 1, mayLoad = 1, mayStore = 1, Defs = [ICC], Predicates = [Is64Bit] in def ATOMIC_SWAP_64 : Pseudo<(outs I64Regs:$rd), (ins ptr_rc:$addr, I64Regs:$rs2), "", [(set i64:$rd, (atomic_swap_64 iPTR:$addr, i64:$rs2))]>; let Predicates = [Is64Bit], hasSideEffects = 1, Uses = [ICC], cc = 0b10 in defm TXCC : TRAP<"%xcc">; // Global addresses, constant pool entries let Predicates = [Is64Bit] in { def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>; def : Pat<(SPlo tglobaladdr:$in), (ORXri (i64 G0), tglobaladdr:$in)>; def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>; def : Pat<(SPlo tconstpool:$in), (ORXri (i64 G0), tconstpool:$in)>; // GlobalTLS addresses def : Pat<(SPhi tglobaltlsaddr:$in), (SETHIi tglobaltlsaddr:$in)>; def : Pat<(SPlo tglobaltlsaddr:$in), (ORXri (i64 G0), tglobaltlsaddr:$in)>; def : Pat<(add (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)), (ADDXri (SETHIXi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>; def : Pat<(xor (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)), (XORXri (SETHIXi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>; // Blockaddress def : Pat<(SPhi tblockaddress:$in), (SETHIi tblockaddress:$in)>; def : Pat<(SPlo tblockaddress:$in), (ORXri (i64 G0), tblockaddress:$in)>; // Add reg, lo. This is used when taking the addr of a global/constpool entry. def : Pat<(add iPTR:$r, (SPlo tglobaladdr:$in)), (ADDXri $r, tglobaladdr:$in)>; def : Pat<(add iPTR:$r, (SPlo tconstpool:$in)), (ADDXri $r, tconstpool:$in)>; def : Pat<(add iPTR:$r, (SPlo tblockaddress:$in)), (ADDXri $r, tblockaddress:$in)>; }