//===-- InductiveRangeCheckElimination.cpp - ------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // The InductiveRangeCheckElimination pass splits a loop's iteration space into // three disjoint ranges. It does that in a way such that the loop running in // the middle loop provably does not need range checks. As an example, it will // convert // // len = < known positive > // for (i = 0; i < n; i++) { // if (0 <= i && i < len) { // do_something(); // } else { // throw_out_of_bounds(); // } // } // // to // // len = < known positive > // limit = smin(n, len) // // no first segment // for (i = 0; i < limit; i++) { // if (0 <= i && i < len) { // this check is fully redundant // do_something(); // } else { // throw_out_of_bounds(); // } // } // for (i = limit; i < n; i++) { // if (0 <= i && i < len) { // do_something(); // } else { // throw_out_of_bounds(); // } // } //===----------------------------------------------------------------------===// #include "llvm/ADT/Optional.h" #include "llvm/Analysis/BranchProbabilityInfo.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolutionExpander.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Module.h" #include "llvm/IR/PatternMatch.h" #include "llvm/IR/ValueHandle.h" #include "llvm/IR/Verifier.h" #include "llvm/Pass.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Cloning.h" #include "llvm/Transforms/Utils/LoopUtils.h" #include "llvm/Transforms/Utils/SimplifyIndVar.h" #include "llvm/Transforms/Utils/UnrollLoop.h" #include using namespace llvm; static cl::opt LoopSizeCutoff("irce-loop-size-cutoff", cl::Hidden, cl::init(64)); static cl::opt PrintChangedLoops("irce-print-changed-loops", cl::Hidden, cl::init(false)); static cl::opt PrintRangeChecks("irce-print-range-checks", cl::Hidden, cl::init(false)); static cl::opt MaxExitProbReciprocal("irce-max-exit-prob-reciprocal", cl::Hidden, cl::init(10)); #define DEBUG_TYPE "irce" namespace { /// An inductive range check is conditional branch in a loop with /// /// 1. a very cold successor (i.e. the branch jumps to that successor very /// rarely) /// /// and /// /// 2. a condition that is provably true for some contiguous range of values /// taken by the containing loop's induction variable. /// class InductiveRangeCheck { // Classifies a range check enum RangeCheckKind : unsigned { // Range check of the form "0 <= I". RANGE_CHECK_LOWER = 1, // Range check of the form "I < L" where L is known positive. RANGE_CHECK_UPPER = 2, // The logical and of the RANGE_CHECK_LOWER and RANGE_CHECK_UPPER // conditions. RANGE_CHECK_BOTH = RANGE_CHECK_LOWER | RANGE_CHECK_UPPER, // Unrecognized range check condition. RANGE_CHECK_UNKNOWN = (unsigned)-1 }; static const char *rangeCheckKindToStr(RangeCheckKind); const SCEV *Offset; const SCEV *Scale; Value *Length; BranchInst *Branch; RangeCheckKind Kind; static RangeCheckKind parseRangeCheckICmp(Loop *L, ICmpInst *ICI, ScalarEvolution &SE, Value *&Index, Value *&Length); static InductiveRangeCheck::RangeCheckKind parseRangeCheck(Loop *L, ScalarEvolution &SE, Value *Condition, const SCEV *&Index, Value *&UpperLimit); InductiveRangeCheck() : Offset(nullptr), Scale(nullptr), Length(nullptr), Branch(nullptr) { } public: const SCEV *getOffset() const { return Offset; } const SCEV *getScale() const { return Scale; } Value *getLength() const { return Length; } void print(raw_ostream &OS) const { OS << "InductiveRangeCheck:\n"; OS << " Kind: " << rangeCheckKindToStr(Kind) << "\n"; OS << " Offset: "; Offset->print(OS); OS << " Scale: "; Scale->print(OS); OS << " Length: "; if (Length) Length->print(OS); else OS << "(null)"; OS << "\n Branch: "; getBranch()->print(OS); OS << "\n"; } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) void dump() { print(dbgs()); } #endif BranchInst *getBranch() const { return Branch; } /// Represents an signed integer range [Range.getBegin(), Range.getEnd()). If /// R.getEnd() sle R.getBegin(), then R denotes the empty range. class Range { const SCEV *Begin; const SCEV *End; public: Range(const SCEV *Begin, const SCEV *End) : Begin(Begin), End(End) { assert(Begin->getType() == End->getType() && "ill-typed range!"); } Type *getType() const { return Begin->getType(); } const SCEV *getBegin() const { return Begin; } const SCEV *getEnd() const { return End; } }; typedef SpecificBumpPtrAllocator AllocatorTy; /// This is the value the condition of the branch needs to evaluate to for the /// branch to take the hot successor (see (1) above). bool getPassingDirection() { return true; } /// Computes a range for the induction variable (IndVar) in which the range /// check is redundant and can be constant-folded away. The induction /// variable is not required to be the canonical {0,+,1} induction variable. Optional computeSafeIterationSpace(ScalarEvolution &SE, const SCEVAddRecExpr *IndVar, IRBuilder<> &B) const; /// Create an inductive range check out of BI if possible, else return /// nullptr. static InductiveRangeCheck *create(AllocatorTy &Alloc, BranchInst *BI, Loop *L, ScalarEvolution &SE, BranchProbabilityInfo &BPI); }; class InductiveRangeCheckElimination : public LoopPass { InductiveRangeCheck::AllocatorTy Allocator; public: static char ID; InductiveRangeCheckElimination() : LoopPass(ID) { initializeInductiveRangeCheckEliminationPass( *PassRegistry::getPassRegistry()); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addRequiredID(LoopSimplifyID); AU.addRequiredID(LCSSAID); AU.addRequired(); AU.addRequired(); } bool runOnLoop(Loop *L, LPPassManager &LPM) override; }; char InductiveRangeCheckElimination::ID = 0; } INITIALIZE_PASS(InductiveRangeCheckElimination, "irce", "Inductive range check elimination", false, false) const char *InductiveRangeCheck::rangeCheckKindToStr( InductiveRangeCheck::RangeCheckKind RCK) { switch (RCK) { case InductiveRangeCheck::RANGE_CHECK_UNKNOWN: return "RANGE_CHECK_UNKNOWN"; case InductiveRangeCheck::RANGE_CHECK_UPPER: return "RANGE_CHECK_UPPER"; case InductiveRangeCheck::RANGE_CHECK_LOWER: return "RANGE_CHECK_LOWER"; case InductiveRangeCheck::RANGE_CHECK_BOTH: return "RANGE_CHECK_BOTH"; } llvm_unreachable("unknown range check type!"); } /// Parse a single ICmp instruction, `ICI`, into a range check. If `ICI` /// cannot /// be interpreted as a range check, return `RANGE_CHECK_UNKNOWN` and set /// `Index` and `Length` to `nullptr`. Otherwise set `Index` to the value /// being /// range checked, and set `Length` to the upper limit `Index` is being range /// checked with if (and only if) the range check type is stronger or equal to /// RANGE_CHECK_UPPER. /// InductiveRangeCheck::RangeCheckKind InductiveRangeCheck::parseRangeCheckICmp(Loop *L, ICmpInst *ICI, ScalarEvolution &SE, Value *&Index, Value *&Length) { auto IsNonNegativeAndNotLoopVarying = [&SE, L](Value *V) { const SCEV *S = SE.getSCEV(V); if (isa(S)) return false; return SE.getLoopDisposition(S, L) == ScalarEvolution::LoopInvariant && SE.isKnownNonNegative(S); }; using namespace llvm::PatternMatch; ICmpInst::Predicate Pred = ICI->getPredicate(); Value *LHS = ICI->getOperand(0); Value *RHS = ICI->getOperand(1); switch (Pred) { default: return RANGE_CHECK_UNKNOWN; case ICmpInst::ICMP_SLE: std::swap(LHS, RHS); // fallthrough case ICmpInst::ICMP_SGE: if (match(RHS, m_ConstantInt<0>())) { Index = LHS; return RANGE_CHECK_LOWER; } return RANGE_CHECK_UNKNOWN; case ICmpInst::ICMP_SLT: std::swap(LHS, RHS); // fallthrough case ICmpInst::ICMP_SGT: if (match(RHS, m_ConstantInt<-1>())) { Index = LHS; return RANGE_CHECK_LOWER; } if (IsNonNegativeAndNotLoopVarying(LHS)) { Index = RHS; Length = LHS; return RANGE_CHECK_UPPER; } return RANGE_CHECK_UNKNOWN; case ICmpInst::ICMP_ULT: std::swap(LHS, RHS); // fallthrough case ICmpInst::ICMP_UGT: if (IsNonNegativeAndNotLoopVarying(LHS)) { Index = RHS; Length = LHS; return RANGE_CHECK_BOTH; } return RANGE_CHECK_UNKNOWN; } llvm_unreachable("default clause returns!"); } /// Parses an arbitrary condition into a range check. `Length` is set only if /// the range check is recognized to be `RANGE_CHECK_UPPER` or stronger. InductiveRangeCheck::RangeCheckKind InductiveRangeCheck::parseRangeCheck(Loop *L, ScalarEvolution &SE, Value *Condition, const SCEV *&Index, Value *&Length) { using namespace llvm::PatternMatch; Value *A = nullptr; Value *B = nullptr; if (match(Condition, m_And(m_Value(A), m_Value(B)))) { Value *IndexA = nullptr, *IndexB = nullptr; Value *LengthA = nullptr, *LengthB = nullptr; ICmpInst *ICmpA = dyn_cast(A), *ICmpB = dyn_cast(B); if (!ICmpA || !ICmpB) return InductiveRangeCheck::RANGE_CHECK_UNKNOWN; auto RCKindA = parseRangeCheckICmp(L, ICmpA, SE, IndexA, LengthA); auto RCKindB = parseRangeCheckICmp(L, ICmpB, SE, IndexB, LengthB); if (RCKindA == InductiveRangeCheck::RANGE_CHECK_UNKNOWN || RCKindB == InductiveRangeCheck::RANGE_CHECK_UNKNOWN) return InductiveRangeCheck::RANGE_CHECK_UNKNOWN; if (IndexA != IndexB) return InductiveRangeCheck::RANGE_CHECK_UNKNOWN; if (LengthA != nullptr && LengthB != nullptr && LengthA != LengthB) return InductiveRangeCheck::RANGE_CHECK_UNKNOWN; Index = SE.getSCEV(IndexA); if (isa(Index)) return InductiveRangeCheck::RANGE_CHECK_UNKNOWN; Length = LengthA == nullptr ? LengthB : LengthA; return (InductiveRangeCheck::RangeCheckKind)(RCKindA | RCKindB); } if (ICmpInst *ICI = dyn_cast(Condition)) { Value *IndexVal = nullptr; auto RCKind = parseRangeCheckICmp(L, ICI, SE, IndexVal, Length); if (RCKind == InductiveRangeCheck::RANGE_CHECK_UNKNOWN) return InductiveRangeCheck::RANGE_CHECK_UNKNOWN; Index = SE.getSCEV(IndexVal); if (isa(Index)) return InductiveRangeCheck::RANGE_CHECK_UNKNOWN; return RCKind; } return InductiveRangeCheck::RANGE_CHECK_UNKNOWN; } InductiveRangeCheck * InductiveRangeCheck::create(InductiveRangeCheck::AllocatorTy &A, BranchInst *BI, Loop *L, ScalarEvolution &SE, BranchProbabilityInfo &BPI) { if (BI->isUnconditional() || BI->getParent() == L->getLoopLatch()) return nullptr; BranchProbability LikelyTaken(15, 16); if (BPI.getEdgeProbability(BI->getParent(), (unsigned) 0) < LikelyTaken) return nullptr; Value *Length = nullptr; const SCEV *IndexSCEV = nullptr; auto RCKind = InductiveRangeCheck::parseRangeCheck(L, SE, BI->getCondition(), IndexSCEV, Length); if (RCKind == InductiveRangeCheck::RANGE_CHECK_UNKNOWN) return nullptr; assert(IndexSCEV && "contract with SplitRangeCheckCondition!"); assert((!(RCKind & InductiveRangeCheck::RANGE_CHECK_UPPER) || Length) && "contract with SplitRangeCheckCondition!"); const SCEVAddRecExpr *IndexAddRec = dyn_cast(IndexSCEV); bool IsAffineIndex = IndexAddRec && (IndexAddRec->getLoop() == L) && IndexAddRec->isAffine(); if (!IsAffineIndex) return nullptr; InductiveRangeCheck *IRC = new (A.Allocate()) InductiveRangeCheck; IRC->Length = Length; IRC->Offset = IndexAddRec->getStart(); IRC->Scale = IndexAddRec->getStepRecurrence(SE); IRC->Branch = BI; IRC->Kind = RCKind; return IRC; } namespace { // Keeps track of the structure of a loop. This is similar to llvm::Loop, // except that it is more lightweight and can track the state of a loop through // changing and potentially invalid IR. This structure also formalizes the // kinds of loops we can deal with -- ones that have a single latch that is also // an exiting block *and* have a canonical induction variable. struct LoopStructure { const char *Tag; BasicBlock *Header; BasicBlock *Latch; // `Latch's terminator instruction is `LatchBr', and it's `LatchBrExitIdx'th // successor is `LatchExit', the exit block of the loop. BranchInst *LatchBr; BasicBlock *LatchExit; unsigned LatchBrExitIdx; Value *IndVarNext; Value *IndVarStart; Value *LoopExitAt; bool IndVarIncreasing; LoopStructure() : Tag(""), Header(nullptr), Latch(nullptr), LatchBr(nullptr), LatchExit(nullptr), LatchBrExitIdx(-1), IndVarNext(nullptr), IndVarStart(nullptr), LoopExitAt(nullptr), IndVarIncreasing(false) {} template LoopStructure map(M Map) const { LoopStructure Result; Result.Tag = Tag; Result.Header = cast(Map(Header)); Result.Latch = cast(Map(Latch)); Result.LatchBr = cast(Map(LatchBr)); Result.LatchExit = cast(Map(LatchExit)); Result.LatchBrExitIdx = LatchBrExitIdx; Result.IndVarNext = Map(IndVarNext); Result.IndVarStart = Map(IndVarStart); Result.LoopExitAt = Map(LoopExitAt); Result.IndVarIncreasing = IndVarIncreasing; return Result; } static Optional parseLoopStructure(ScalarEvolution &, BranchProbabilityInfo &BPI, Loop &, const char *&); }; /// This class is used to constrain loops to run within a given iteration space. /// The algorithm this class implements is given a Loop and a range [Begin, /// End). The algorithm then tries to break out a "main loop" out of the loop /// it is given in a way that the "main loop" runs with the induction variable /// in a subset of [Begin, End). The algorithm emits appropriate pre and post /// loops to run any remaining iterations. The pre loop runs any iterations in /// which the induction variable is < Begin, and the post loop runs any /// iterations in which the induction variable is >= End. /// class LoopConstrainer { // The representation of a clone of the original loop we started out with. struct ClonedLoop { // The cloned blocks std::vector Blocks; // `Map` maps values in the clonee into values in the cloned version ValueToValueMapTy Map; // An instance of `LoopStructure` for the cloned loop LoopStructure Structure; }; // Result of rewriting the range of a loop. See changeIterationSpaceEnd for // more details on what these fields mean. struct RewrittenRangeInfo { BasicBlock *PseudoExit; BasicBlock *ExitSelector; std::vector PHIValuesAtPseudoExit; PHINode *IndVarEnd; RewrittenRangeInfo() : PseudoExit(nullptr), ExitSelector(nullptr), IndVarEnd(nullptr) {} }; // Calculated subranges we restrict the iteration space of the main loop to. // See the implementation of `calculateSubRanges' for more details on how // these fields are computed. `LowLimit` is None if there is no restriction // on low end of the restricted iteration space of the main loop. `HighLimit` // is None if there is no restriction on high end of the restricted iteration // space of the main loop. struct SubRanges { Optional LowLimit; Optional HighLimit; }; // A utility function that does a `replaceUsesOfWith' on the incoming block // set of a `PHINode' -- replaces instances of `Block' in the `PHINode's // incoming block list with `ReplaceBy'. static void replacePHIBlock(PHINode *PN, BasicBlock *Block, BasicBlock *ReplaceBy); // Compute a safe set of limits for the main loop to run in -- effectively the // intersection of `Range' and the iteration space of the original loop. // Return None if unable to compute the set of subranges. // Optional calculateSubRanges() const; // Clone `OriginalLoop' and return the result in CLResult. The IR after // running `cloneLoop' is well formed except for the PHI nodes in CLResult -- // the PHI nodes say that there is an incoming edge from `OriginalPreheader` // but there is no such edge. // void cloneLoop(ClonedLoop &CLResult, const char *Tag) const; // Rewrite the iteration space of the loop denoted by (LS, Preheader). The // iteration space of the rewritten loop ends at ExitLoopAt. The start of the // iteration space is not changed. `ExitLoopAt' is assumed to be slt // `OriginalHeaderCount'. // // If there are iterations left to execute, control is made to jump to // `ContinuationBlock', otherwise they take the normal loop exit. The // returned `RewrittenRangeInfo' object is populated as follows: // // .PseudoExit is a basic block that unconditionally branches to // `ContinuationBlock'. // // .ExitSelector is a basic block that decides, on exit from the loop, // whether to branch to the "true" exit or to `PseudoExit'. // // .PHIValuesAtPseudoExit are PHINodes in `PseudoExit' that compute the value // for each PHINode in the loop header on taking the pseudo exit. // // After changeIterationSpaceEnd, `Preheader' is no longer a legitimate // preheader because it is made to branch to the loop header only // conditionally. // RewrittenRangeInfo changeIterationSpaceEnd(const LoopStructure &LS, BasicBlock *Preheader, Value *ExitLoopAt, BasicBlock *ContinuationBlock) const; // The loop denoted by `LS' has `OldPreheader' as its preheader. This // function creates a new preheader for `LS' and returns it. // BasicBlock *createPreheader(const LoopStructure &LS, BasicBlock *OldPreheader, const char *Tag) const; // `ContinuationBlockAndPreheader' was the continuation block for some call to // `changeIterationSpaceEnd' and is the preheader to the loop denoted by `LS'. // This function rewrites the PHI nodes in `LS.Header' to start with the // correct value. void rewriteIncomingValuesForPHIs( LoopStructure &LS, BasicBlock *ContinuationBlockAndPreheader, const LoopConstrainer::RewrittenRangeInfo &RRI) const; // Even though we do not preserve any passes at this time, we at least need to // keep the parent loop structure consistent. The `LPPassManager' seems to // verify this after running a loop pass. This function adds the list of // blocks denoted by BBs to this loops parent loop if required. void addToParentLoopIfNeeded(ArrayRef BBs); // Some global state. Function &F; LLVMContext &Ctx; ScalarEvolution &SE; // Information about the original loop we started out with. Loop &OriginalLoop; LoopInfo &OriginalLoopInfo; const SCEV *LatchTakenCount; BasicBlock *OriginalPreheader; // The preheader of the main loop. This may or may not be different from // `OriginalPreheader'. BasicBlock *MainLoopPreheader; // The range we need to run the main loop in. InductiveRangeCheck::Range Range; // The structure of the main loop (see comment at the beginning of this class // for a definition) LoopStructure MainLoopStructure; public: LoopConstrainer(Loop &L, LoopInfo &LI, const LoopStructure &LS, ScalarEvolution &SE, InductiveRangeCheck::Range R) : F(*L.getHeader()->getParent()), Ctx(L.getHeader()->getContext()), SE(SE), OriginalLoop(L), OriginalLoopInfo(LI), LatchTakenCount(nullptr), OriginalPreheader(nullptr), MainLoopPreheader(nullptr), Range(R), MainLoopStructure(LS) {} // Entry point for the algorithm. Returns true on success. bool run(); }; } void LoopConstrainer::replacePHIBlock(PHINode *PN, BasicBlock *Block, BasicBlock *ReplaceBy) { for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) if (PN->getIncomingBlock(i) == Block) PN->setIncomingBlock(i, ReplaceBy); } static bool CanBeSMax(ScalarEvolution &SE, const SCEV *S) { APInt SMax = APInt::getSignedMaxValue(cast(S->getType())->getBitWidth()); return SE.getSignedRange(S).contains(SMax) && SE.getUnsignedRange(S).contains(SMax); } static bool CanBeSMin(ScalarEvolution &SE, const SCEV *S) { APInt SMin = APInt::getSignedMinValue(cast(S->getType())->getBitWidth()); return SE.getSignedRange(S).contains(SMin) && SE.getUnsignedRange(S).contains(SMin); } Optional LoopStructure::parseLoopStructure(ScalarEvolution &SE, BranchProbabilityInfo &BPI, Loop &L, const char *&FailureReason) { assert(L.isLoopSimplifyForm() && "should follow from addRequired<>"); BasicBlock *Latch = L.getLoopLatch(); if (!L.isLoopExiting(Latch)) { FailureReason = "no loop latch"; return None; } BasicBlock *Header = L.getHeader(); BasicBlock *Preheader = L.getLoopPreheader(); if (!Preheader) { FailureReason = "no preheader"; return None; } BranchInst *LatchBr = dyn_cast(&*Latch->rbegin()); if (!LatchBr || LatchBr->isUnconditional()) { FailureReason = "latch terminator not conditional branch"; return None; } unsigned LatchBrExitIdx = LatchBr->getSuccessor(0) == Header ? 1 : 0; BranchProbability ExitProbability = BPI.getEdgeProbability(LatchBr->getParent(), LatchBrExitIdx); if (ExitProbability > BranchProbability(1, MaxExitProbReciprocal)) { FailureReason = "short running loop, not profitable"; return None; } ICmpInst *ICI = dyn_cast(LatchBr->getCondition()); if (!ICI || !isa(ICI->getOperand(0)->getType())) { FailureReason = "latch terminator branch not conditional on integral icmp"; return None; } const SCEV *LatchCount = SE.getExitCount(&L, Latch); if (isa(LatchCount)) { FailureReason = "could not compute latch count"; return None; } ICmpInst::Predicate Pred = ICI->getPredicate(); Value *LeftValue = ICI->getOperand(0); const SCEV *LeftSCEV = SE.getSCEV(LeftValue); IntegerType *IndVarTy = cast(LeftValue->getType()); Value *RightValue = ICI->getOperand(1); const SCEV *RightSCEV = SE.getSCEV(RightValue); // We canonicalize `ICI` such that `LeftSCEV` is an add recurrence. if (!isa(LeftSCEV)) { if (isa(RightSCEV)) { std::swap(LeftSCEV, RightSCEV); std::swap(LeftValue, RightValue); Pred = ICmpInst::getSwappedPredicate(Pred); } else { FailureReason = "no add recurrences in the icmp"; return None; } } auto HasNoSignedWrap = [&](const SCEVAddRecExpr *AR) { if (AR->getNoWrapFlags(SCEV::FlagNSW)) return true; IntegerType *Ty = cast(AR->getType()); IntegerType *WideTy = IntegerType::get(Ty->getContext(), Ty->getBitWidth() * 2); const SCEVAddRecExpr *ExtendAfterOp = dyn_cast(SE.getSignExtendExpr(AR, WideTy)); if (ExtendAfterOp) { const SCEV *ExtendedStart = SE.getSignExtendExpr(AR->getStart(), WideTy); const SCEV *ExtendedStep = SE.getSignExtendExpr(AR->getStepRecurrence(SE), WideTy); bool NoSignedWrap = ExtendAfterOp->getStart() == ExtendedStart && ExtendAfterOp->getStepRecurrence(SE) == ExtendedStep; if (NoSignedWrap) return true; } // We may have proved this when computing the sign extension above. return AR->getNoWrapFlags(SCEV::FlagNSW) != SCEV::FlagAnyWrap; }; auto IsInductionVar = [&](const SCEVAddRecExpr *AR, bool &IsIncreasing) { if (!AR->isAffine()) return false; // Currently we only work with induction variables that have been proved to // not wrap. This restriction can potentially be lifted in the future. if (!HasNoSignedWrap(AR)) return false; if (const SCEVConstant *StepExpr = dyn_cast(AR->getStepRecurrence(SE))) { ConstantInt *StepCI = StepExpr->getValue(); if (StepCI->isOne() || StepCI->isMinusOne()) { IsIncreasing = StepCI->isOne(); return true; } } return false; }; // `ICI` is interpreted as taking the backedge if the *next* value of the // induction variable satisfies some constraint. const SCEVAddRecExpr *IndVarNext = cast(LeftSCEV); bool IsIncreasing = false; if (!IsInductionVar(IndVarNext, IsIncreasing)) { FailureReason = "LHS in icmp not induction variable"; return None; } ConstantInt *One = ConstantInt::get(IndVarTy, 1); // TODO: generalize the predicates here to also match their unsigned variants. if (IsIncreasing) { bool FoundExpectedPred = (Pred == ICmpInst::ICMP_SLT && LatchBrExitIdx == 1) || (Pred == ICmpInst::ICMP_SGT && LatchBrExitIdx == 0); if (!FoundExpectedPred) { FailureReason = "expected icmp slt semantically, found something else"; return None; } if (LatchBrExitIdx == 0) { if (CanBeSMax(SE, RightSCEV)) { // TODO: this restriction is easily removable -- we just have to // remember that the icmp was an slt and not an sle. FailureReason = "limit may overflow when coercing sle to slt"; return None; } IRBuilder<> B(&*Preheader->rbegin()); RightValue = B.CreateAdd(RightValue, One); } } else { bool FoundExpectedPred = (Pred == ICmpInst::ICMP_SGT && LatchBrExitIdx == 1) || (Pred == ICmpInst::ICMP_SLT && LatchBrExitIdx == 0); if (!FoundExpectedPred) { FailureReason = "expected icmp sgt semantically, found something else"; return None; } if (LatchBrExitIdx == 0) { if (CanBeSMin(SE, RightSCEV)) { // TODO: this restriction is easily removable -- we just have to // remember that the icmp was an sgt and not an sge. FailureReason = "limit may overflow when coercing sge to sgt"; return None; } IRBuilder<> B(&*Preheader->rbegin()); RightValue = B.CreateSub(RightValue, One); } } const SCEV *StartNext = IndVarNext->getStart(); const SCEV *Addend = SE.getNegativeSCEV(IndVarNext->getStepRecurrence(SE)); const SCEV *IndVarStart = SE.getAddExpr(StartNext, Addend); BasicBlock *LatchExit = LatchBr->getSuccessor(LatchBrExitIdx); assert(SE.getLoopDisposition(LatchCount, &L) == ScalarEvolution::LoopInvariant && "loop variant exit count doesn't make sense!"); assert(!L.contains(LatchExit) && "expected an exit block!"); const DataLayout &DL = Preheader->getModule()->getDataLayout(); Value *IndVarStartV = SCEVExpander(SE, DL, "irce") .expandCodeFor(IndVarStart, IndVarTy, &*Preheader->rbegin()); IndVarStartV->setName("indvar.start"); LoopStructure Result; Result.Tag = "main"; Result.Header = Header; Result.Latch = Latch; Result.LatchBr = LatchBr; Result.LatchExit = LatchExit; Result.LatchBrExitIdx = LatchBrExitIdx; Result.IndVarStart = IndVarStartV; Result.IndVarNext = LeftValue; Result.IndVarIncreasing = IsIncreasing; Result.LoopExitAt = RightValue; FailureReason = nullptr; return Result; } Optional LoopConstrainer::calculateSubRanges() const { IntegerType *Ty = cast(LatchTakenCount->getType()); if (Range.getType() != Ty) return None; LoopConstrainer::SubRanges Result; // I think we can be more aggressive here and make this nuw / nsw if the // addition that feeds into the icmp for the latch's terminating branch is nuw // / nsw. In any case, a wrapping 2's complement addition is safe. ConstantInt *One = ConstantInt::get(Ty, 1); const SCEV *Start = SE.getSCEV(MainLoopStructure.IndVarStart); const SCEV *End = SE.getSCEV(MainLoopStructure.LoopExitAt); bool Increasing = MainLoopStructure.IndVarIncreasing; // We compute `Smallest` and `Greatest` such that [Smallest, Greatest) is the // range of values the induction variable takes. const SCEV *Smallest = nullptr, *Greatest = nullptr; if (Increasing) { Smallest = Start; Greatest = End; } else { // These two computations may sign-overflow. Here is why that is okay: // // We know that the induction variable does not sign-overflow on any // iteration except the last one, and it starts at `Start` and ends at // `End`, decrementing by one every time. // // * if `Smallest` sign-overflows we know `End` is `INT_SMAX`. Since the // induction variable is decreasing we know that that the smallest value // the loop body is actually executed with is `INT_SMIN` == `Smallest`. // // * if `Greatest` sign-overflows, we know it can only be `INT_SMIN`. In // that case, `Clamp` will always return `Smallest` and // [`Result.LowLimit`, `Result.HighLimit`) = [`Smallest`, `Smallest`) // will be an empty range. Returning an empty range is always safe. // Smallest = SE.getAddExpr(End, SE.getSCEV(One)); Greatest = SE.getAddExpr(Start, SE.getSCEV(One)); } auto Clamp = [this, Smallest, Greatest](const SCEV *S) { return SE.getSMaxExpr(Smallest, SE.getSMinExpr(Greatest, S)); }; // In some cases we can prove that we don't need a pre or post loop bool ProvablyNoPreloop = SE.isKnownPredicate(ICmpInst::ICMP_SLE, Range.getBegin(), Smallest); if (!ProvablyNoPreloop) Result.LowLimit = Clamp(Range.getBegin()); bool ProvablyNoPostLoop = SE.isKnownPredicate(ICmpInst::ICMP_SLE, Greatest, Range.getEnd()); if (!ProvablyNoPostLoop) Result.HighLimit = Clamp(Range.getEnd()); return Result; } void LoopConstrainer::cloneLoop(LoopConstrainer::ClonedLoop &Result, const char *Tag) const { for (BasicBlock *BB : OriginalLoop.getBlocks()) { BasicBlock *Clone = CloneBasicBlock(BB, Result.Map, Twine(".") + Tag, &F); Result.Blocks.push_back(Clone); Result.Map[BB] = Clone; } auto GetClonedValue = [&Result](Value *V) { assert(V && "null values not in domain!"); auto It = Result.Map.find(V); if (It == Result.Map.end()) return V; return static_cast(It->second); }; Result.Structure = MainLoopStructure.map(GetClonedValue); Result.Structure.Tag = Tag; for (unsigned i = 0, e = Result.Blocks.size(); i != e; ++i) { BasicBlock *ClonedBB = Result.Blocks[i]; BasicBlock *OriginalBB = OriginalLoop.getBlocks()[i]; assert(Result.Map[OriginalBB] == ClonedBB && "invariant!"); for (Instruction &I : *ClonedBB) RemapInstruction(&I, Result.Map, RF_NoModuleLevelChanges | RF_IgnoreMissingEntries); // Exit blocks will now have one more predecessor and their PHI nodes need // to be edited to reflect that. No phi nodes need to be introduced because // the loop is in LCSSA. for (auto SBBI = succ_begin(OriginalBB), SBBE = succ_end(OriginalBB); SBBI != SBBE; ++SBBI) { if (OriginalLoop.contains(*SBBI)) continue; // not an exit block for (Instruction &I : **SBBI) { if (!isa(&I)) break; PHINode *PN = cast(&I); Value *OldIncoming = PN->getIncomingValueForBlock(OriginalBB); PN->addIncoming(GetClonedValue(OldIncoming), ClonedBB); } } } } LoopConstrainer::RewrittenRangeInfo LoopConstrainer::changeIterationSpaceEnd( const LoopStructure &LS, BasicBlock *Preheader, Value *ExitSubloopAt, BasicBlock *ContinuationBlock) const { // We start with a loop with a single latch: // // +--------------------+ // | | // | preheader | // | | // +--------+-----------+ // | ----------------\ // | / | // +--------v----v------+ | // | | | // | header | | // | | | // +--------------------+ | // | // ..... | // | // +--------------------+ | // | | | // | latch >----------/ // | | // +-------v------------+ // | // | // | +--------------------+ // | | | // +---> original exit | // | | // +--------------------+ // // We change the control flow to look like // // // +--------------------+ // | | // | preheader >-------------------------+ // | | | // +--------v-----------+ | // | /-------------+ | // | / | | // +--------v--v--------+ | | // | | | | // | header | | +--------+ | // | | | | | | // +--------------------+ | | +-----v-----v-----------+ // | | | | // | | | .pseudo.exit | // | | | | // | | +-----------v-----------+ // | | | // ..... | | | // | | +--------v-------------+ // +--------------------+ | | | | // | | | | | ContinuationBlock | // | latch >------+ | | | // | | | +----------------------+ // +---------v----------+ | // | | // | | // | +---------------^-----+ // | | | // +-----> .exit.selector | // | | // +----------v----------+ // | // +--------------------+ | // | | | // | original exit <----+ // | | // +--------------------+ // RewrittenRangeInfo RRI; auto BBInsertLocation = std::next(Function::iterator(LS.Latch)); RRI.ExitSelector = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".exit.selector", &F, BBInsertLocation); RRI.PseudoExit = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".pseudo.exit", &F, BBInsertLocation); BranchInst *PreheaderJump = cast(&*Preheader->rbegin()); bool Increasing = LS.IndVarIncreasing; IRBuilder<> B(PreheaderJump); // EnterLoopCond - is it okay to start executing this `LS'? Value *EnterLoopCond = Increasing ? B.CreateICmpSLT(LS.IndVarStart, ExitSubloopAt) : B.CreateICmpSGT(LS.IndVarStart, ExitSubloopAt); B.CreateCondBr(EnterLoopCond, LS.Header, RRI.PseudoExit); PreheaderJump->eraseFromParent(); LS.LatchBr->setSuccessor(LS.LatchBrExitIdx, RRI.ExitSelector); B.SetInsertPoint(LS.LatchBr); Value *TakeBackedgeLoopCond = Increasing ? B.CreateICmpSLT(LS.IndVarNext, ExitSubloopAt) : B.CreateICmpSGT(LS.IndVarNext, ExitSubloopAt); Value *CondForBranch = LS.LatchBrExitIdx == 1 ? TakeBackedgeLoopCond : B.CreateNot(TakeBackedgeLoopCond); LS.LatchBr->setCondition(CondForBranch); B.SetInsertPoint(RRI.ExitSelector); // IterationsLeft - are there any more iterations left, given the original // upper bound on the induction variable? If not, we branch to the "real" // exit. Value *IterationsLeft = Increasing ? B.CreateICmpSLT(LS.IndVarNext, LS.LoopExitAt) : B.CreateICmpSGT(LS.IndVarNext, LS.LoopExitAt); B.CreateCondBr(IterationsLeft, RRI.PseudoExit, LS.LatchExit); BranchInst *BranchToContinuation = BranchInst::Create(ContinuationBlock, RRI.PseudoExit); // We emit PHI nodes into `RRI.PseudoExit' that compute the "latest" value of // each of the PHI nodes in the loop header. This feeds into the initial // value of the same PHI nodes if/when we continue execution. for (Instruction &I : *LS.Header) { if (!isa(&I)) break; PHINode *PN = cast(&I); PHINode *NewPHI = PHINode::Create(PN->getType(), 2, PN->getName() + ".copy", BranchToContinuation); NewPHI->addIncoming(PN->getIncomingValueForBlock(Preheader), Preheader); NewPHI->addIncoming(PN->getIncomingValueForBlock(LS.Latch), RRI.ExitSelector); RRI.PHIValuesAtPseudoExit.push_back(NewPHI); } RRI.IndVarEnd = PHINode::Create(LS.IndVarNext->getType(), 2, "indvar.end", BranchToContinuation); RRI.IndVarEnd->addIncoming(LS.IndVarStart, Preheader); RRI.IndVarEnd->addIncoming(LS.IndVarNext, RRI.ExitSelector); // The latch exit now has a branch from `RRI.ExitSelector' instead of // `LS.Latch'. The PHI nodes need to be updated to reflect that. for (Instruction &I : *LS.LatchExit) { if (PHINode *PN = dyn_cast(&I)) replacePHIBlock(PN, LS.Latch, RRI.ExitSelector); else break; } return RRI; } void LoopConstrainer::rewriteIncomingValuesForPHIs( LoopStructure &LS, BasicBlock *ContinuationBlock, const LoopConstrainer::RewrittenRangeInfo &RRI) const { unsigned PHIIndex = 0; for (Instruction &I : *LS.Header) { if (!isa(&I)) break; PHINode *PN = cast(&I); for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) if (PN->getIncomingBlock(i) == ContinuationBlock) PN->setIncomingValue(i, RRI.PHIValuesAtPseudoExit[PHIIndex++]); } LS.IndVarStart = RRI.IndVarEnd; } BasicBlock *LoopConstrainer::createPreheader(const LoopStructure &LS, BasicBlock *OldPreheader, const char *Tag) const { BasicBlock *Preheader = BasicBlock::Create(Ctx, Tag, &F, LS.Header); BranchInst::Create(LS.Header, Preheader); for (Instruction &I : *LS.Header) { if (!isa(&I)) break; PHINode *PN = cast(&I); for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) replacePHIBlock(PN, OldPreheader, Preheader); } return Preheader; } void LoopConstrainer::addToParentLoopIfNeeded(ArrayRef BBs) { Loop *ParentLoop = OriginalLoop.getParentLoop(); if (!ParentLoop) return; for (BasicBlock *BB : BBs) ParentLoop->addBasicBlockToLoop(BB, OriginalLoopInfo); } bool LoopConstrainer::run() { BasicBlock *Preheader = nullptr; LatchTakenCount = SE.getExitCount(&OriginalLoop, MainLoopStructure.Latch); Preheader = OriginalLoop.getLoopPreheader(); assert(!isa(LatchTakenCount) && Preheader != nullptr && "preconditions!"); OriginalPreheader = Preheader; MainLoopPreheader = Preheader; Optional MaybeSR = calculateSubRanges(); if (!MaybeSR.hasValue()) { DEBUG(dbgs() << "irce: could not compute subranges\n"); return false; } SubRanges SR = MaybeSR.getValue(); bool Increasing = MainLoopStructure.IndVarIncreasing; IntegerType *IVTy = cast(MainLoopStructure.IndVarNext->getType()); SCEVExpander Expander(SE, F.getParent()->getDataLayout(), "irce"); Instruction *InsertPt = OriginalPreheader->getTerminator(); // It would have been better to make `PreLoop' and `PostLoop' // `Optional's, but `ValueToValueMapTy' does not have a copy // constructor. ClonedLoop PreLoop, PostLoop; bool NeedsPreLoop = Increasing ? SR.LowLimit.hasValue() : SR.HighLimit.hasValue(); bool NeedsPostLoop = Increasing ? SR.HighLimit.hasValue() : SR.LowLimit.hasValue(); Value *ExitPreLoopAt = nullptr; Value *ExitMainLoopAt = nullptr; const SCEVConstant *MinusOneS = cast(SE.getConstant(IVTy, -1, true /* isSigned */)); if (NeedsPreLoop) { const SCEV *ExitPreLoopAtSCEV = nullptr; if (Increasing) ExitPreLoopAtSCEV = *SR.LowLimit; else { if (CanBeSMin(SE, *SR.HighLimit)) { DEBUG(dbgs() << "irce: could not prove no-overflow when computing " << "preloop exit limit. HighLimit = " << *(*SR.HighLimit) << "\n"); return false; } ExitPreLoopAtSCEV = SE.getAddExpr(*SR.HighLimit, MinusOneS); } ExitPreLoopAt = Expander.expandCodeFor(ExitPreLoopAtSCEV, IVTy, InsertPt); ExitPreLoopAt->setName("exit.preloop.at"); } if (NeedsPostLoop) { const SCEV *ExitMainLoopAtSCEV = nullptr; if (Increasing) ExitMainLoopAtSCEV = *SR.HighLimit; else { if (CanBeSMin(SE, *SR.LowLimit)) { DEBUG(dbgs() << "irce: could not prove no-overflow when computing " << "mainloop exit limit. LowLimit = " << *(*SR.LowLimit) << "\n"); return false; } ExitMainLoopAtSCEV = SE.getAddExpr(*SR.LowLimit, MinusOneS); } ExitMainLoopAt = Expander.expandCodeFor(ExitMainLoopAtSCEV, IVTy, InsertPt); ExitMainLoopAt->setName("exit.mainloop.at"); } // We clone these ahead of time so that we don't have to deal with changing // and temporarily invalid IR as we transform the loops. if (NeedsPreLoop) cloneLoop(PreLoop, "preloop"); if (NeedsPostLoop) cloneLoop(PostLoop, "postloop"); RewrittenRangeInfo PreLoopRRI; if (NeedsPreLoop) { Preheader->getTerminator()->replaceUsesOfWith(MainLoopStructure.Header, PreLoop.Structure.Header); MainLoopPreheader = createPreheader(MainLoopStructure, Preheader, "mainloop"); PreLoopRRI = changeIterationSpaceEnd(PreLoop.Structure, Preheader, ExitPreLoopAt, MainLoopPreheader); rewriteIncomingValuesForPHIs(MainLoopStructure, MainLoopPreheader, PreLoopRRI); } BasicBlock *PostLoopPreheader = nullptr; RewrittenRangeInfo PostLoopRRI; if (NeedsPostLoop) { PostLoopPreheader = createPreheader(PostLoop.Structure, Preheader, "postloop"); PostLoopRRI = changeIterationSpaceEnd(MainLoopStructure, MainLoopPreheader, ExitMainLoopAt, PostLoopPreheader); rewriteIncomingValuesForPHIs(PostLoop.Structure, PostLoopPreheader, PostLoopRRI); } BasicBlock *NewMainLoopPreheader = MainLoopPreheader != Preheader ? MainLoopPreheader : nullptr; BasicBlock *NewBlocks[] = {PostLoopPreheader, PreLoopRRI.PseudoExit, PreLoopRRI.ExitSelector, PostLoopRRI.PseudoExit, PostLoopRRI.ExitSelector, NewMainLoopPreheader}; // Some of the above may be nullptr, filter them out before passing to // addToParentLoopIfNeeded. auto NewBlocksEnd = std::remove(std::begin(NewBlocks), std::end(NewBlocks), nullptr); addToParentLoopIfNeeded(makeArrayRef(std::begin(NewBlocks), NewBlocksEnd)); addToParentLoopIfNeeded(PreLoop.Blocks); addToParentLoopIfNeeded(PostLoop.Blocks); return true; } /// Computes and returns a range of values for the induction variable (IndVar) /// in which the range check can be safely elided. If it cannot compute such a /// range, returns None. Optional InductiveRangeCheck::computeSafeIterationSpace(ScalarEvolution &SE, const SCEVAddRecExpr *IndVar, IRBuilder<> &) const { // IndVar is of the form "A + B * I" (where "I" is the canonical induction // variable, that may or may not exist as a real llvm::Value in the loop) and // this inductive range check is a range check on the "C + D * I" ("C" is // getOffset() and "D" is getScale()). We rewrite the value being range // checked to "M + N * IndVar" where "N" = "D * B^(-1)" and "M" = "C - NA". // Currently we support this only for "B" = "D" = { 1 or -1 }, but the code // can be generalized as needed. // // The actual inequalities we solve are of the form // // 0 <= M + 1 * IndVar < L given L >= 0 (i.e. N == 1) // // The inequality is satisfied by -M <= IndVar < (L - M) [^1]. All additions // and subtractions are twos-complement wrapping and comparisons are signed. // // Proof: // // If there exists IndVar such that -M <= IndVar < (L - M) then it follows // that -M <= (-M + L) [== Eq. 1]. Since L >= 0, if (-M + L) sign-overflows // then (-M + L) < (-M). Hence by [Eq. 1], (-M + L) could not have // overflown. // // This means IndVar = t + (-M) for t in [0, L). Hence (IndVar + M) = t. // Hence 0 <= (IndVar + M) < L // [^1]: Note that the solution does _not_ apply if L < 0; consider values M = // 127, IndVar = 126 and L = -2 in an i8 world. if (!IndVar->isAffine()) return None; const SCEV *A = IndVar->getStart(); const SCEVConstant *B = dyn_cast(IndVar->getStepRecurrence(SE)); if (!B) return None; const SCEV *C = getOffset(); const SCEVConstant *D = dyn_cast(getScale()); if (D != B) return None; ConstantInt *ConstD = D->getValue(); if (!(ConstD->isMinusOne() || ConstD->isOne())) return None; const SCEV *M = SE.getMinusSCEV(C, A); const SCEV *Begin = SE.getNegativeSCEV(M); const SCEV *UpperLimit = nullptr; // We strengthen "0 <= I" to "0 <= I < INT_SMAX" and "I < L" to "0 <= I < L". // We can potentially do much better here. if (Value *V = getLength()) { UpperLimit = SE.getSCEV(V); } else { assert(Kind == InductiveRangeCheck::RANGE_CHECK_LOWER && "invariant!"); unsigned BitWidth = cast(IndVar->getType())->getBitWidth(); UpperLimit = SE.getConstant(APInt::getSignedMaxValue(BitWidth)); } const SCEV *End = SE.getMinusSCEV(UpperLimit, M); return InductiveRangeCheck::Range(Begin, End); } static Optional IntersectRange(ScalarEvolution &SE, const Optional &R1, const InductiveRangeCheck::Range &R2, IRBuilder<> &B) { if (!R1.hasValue()) return R2; auto &R1Value = R1.getValue(); // TODO: we could widen the smaller range and have this work; but for now we // bail out to keep things simple. if (R1Value.getType() != R2.getType()) return None; const SCEV *NewBegin = SE.getSMaxExpr(R1Value.getBegin(), R2.getBegin()); const SCEV *NewEnd = SE.getSMinExpr(R1Value.getEnd(), R2.getEnd()); return InductiveRangeCheck::Range(NewBegin, NewEnd); } bool InductiveRangeCheckElimination::runOnLoop(Loop *L, LPPassManager &LPM) { if (L->getBlocks().size() >= LoopSizeCutoff) { DEBUG(dbgs() << "irce: giving up constraining loop, too large\n";); return false; } BasicBlock *Preheader = L->getLoopPreheader(); if (!Preheader) { DEBUG(dbgs() << "irce: loop has no preheader, leaving\n"); return false; } LLVMContext &Context = Preheader->getContext(); InductiveRangeCheck::AllocatorTy IRCAlloc; SmallVector RangeChecks; ScalarEvolution &SE = getAnalysis(); BranchProbabilityInfo &BPI = getAnalysis().getBPI(); for (auto BBI : L->getBlocks()) if (BranchInst *TBI = dyn_cast(BBI->getTerminator())) if (InductiveRangeCheck *IRC = InductiveRangeCheck::create(IRCAlloc, TBI, L, SE, BPI)) RangeChecks.push_back(IRC); if (RangeChecks.empty()) return false; auto PrintRecognizedRangeChecks = [&](raw_ostream &OS) { OS << "irce: looking at loop "; L->print(OS); OS << "irce: loop has " << RangeChecks.size() << " inductive range checks: \n"; for (InductiveRangeCheck *IRC : RangeChecks) IRC->print(OS); }; DEBUG(PrintRecognizedRangeChecks(dbgs())); if (PrintRangeChecks) PrintRecognizedRangeChecks(errs()); const char *FailureReason = nullptr; Optional MaybeLoopStructure = LoopStructure::parseLoopStructure(SE, BPI, *L, FailureReason); if (!MaybeLoopStructure.hasValue()) { DEBUG(dbgs() << "irce: could not parse loop structure: " << FailureReason << "\n";); return false; } LoopStructure LS = MaybeLoopStructure.getValue(); bool Increasing = LS.IndVarIncreasing; const SCEV *MinusOne = SE.getConstant(LS.IndVarNext->getType(), Increasing ? -1 : 1, true); const SCEVAddRecExpr *IndVar = cast(SE.getAddExpr(SE.getSCEV(LS.IndVarNext), MinusOne)); Optional SafeIterRange; Instruction *ExprInsertPt = Preheader->getTerminator(); SmallVector RangeChecksToEliminate; IRBuilder<> B(ExprInsertPt); for (InductiveRangeCheck *IRC : RangeChecks) { auto Result = IRC->computeSafeIterationSpace(SE, IndVar, B); if (Result.hasValue()) { auto MaybeSafeIterRange = IntersectRange(SE, SafeIterRange, Result.getValue(), B); if (MaybeSafeIterRange.hasValue()) { RangeChecksToEliminate.push_back(IRC); SafeIterRange = MaybeSafeIterRange.getValue(); } } } if (!SafeIterRange.hasValue()) return false; LoopConstrainer LC(*L, getAnalysis().getLoopInfo(), LS, SE, SafeIterRange.getValue()); bool Changed = LC.run(); if (Changed) { auto PrintConstrainedLoopInfo = [L]() { dbgs() << "irce: in function "; dbgs() << L->getHeader()->getParent()->getName() << ": "; dbgs() << "constrained "; L->print(dbgs()); }; DEBUG(PrintConstrainedLoopInfo()); if (PrintChangedLoops) PrintConstrainedLoopInfo(); // Optimize away the now-redundant range checks. for (InductiveRangeCheck *IRC : RangeChecksToEliminate) { ConstantInt *FoldedRangeCheck = IRC->getPassingDirection() ? ConstantInt::getTrue(Context) : ConstantInt::getFalse(Context); IRC->getBranch()->setCondition(FoldedRangeCheck); } } return Changed; } Pass *llvm::createInductiveRangeCheckEliminationPass() { return new InductiveRangeCheckElimination; }