//===- NaryReassociate.cpp - Reassociate n-ary expressions ----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass reassociates n-ary add expressions and eliminates the redundancy // exposed by the reassociation. // // A motivating example: // // void foo(int a, int b) { // bar(a + b); // bar((a + 2) + b); // } // // An ideal compiler should reassociate (a + 2) + b to (a + b) + 2 and simplify // the above code to // // int t = a + b; // bar(t); // bar(t + 2); // // However, the Reassociate pass is unable to do that because it processes each // instruction individually and believes (a + 2) + b is the best form according // to its rank system. // // To address this limitation, NaryReassociate reassociates an expression in a // form that reuses existing instructions. As a result, NaryReassociate can // reassociate (a + 2) + b in the example to (a + b) + 2 because it detects that // (a + b) is computed before. // // NaryReassociate works as follows. For every instruction in the form of (a + // b) + c, it checks whether a + c or b + c is already computed by a dominating // instruction. If so, it then reassociates (a + b) + c into (a + c) + b or (b + // c) + a and removes the redundancy accordingly. To efficiently look up whether // an expression is computed before, we store each instruction seen and its SCEV // into an SCEV-to-instruction map. // // Although the algorithm pattern-matches only ternary additions, it // automatically handles many >3-ary expressions by walking through the function // in the depth-first order. For example, given // // (a + c) + d // ((a + b) + c) + d // // NaryReassociate first rewrites (a + b) + c to (a + c) + b, and then rewrites // ((a + c) + b) + d into ((a + c) + d) + b. // // Finally, the above dominator-based algorithm may need to be run multiple // iterations before emitting optimal code. One source of this need is that we // only split an operand when it is used only once. The above algorithm can // eliminate an instruction and decrease the usage count of its operands. As a // result, an instruction that previously had multiple uses may become a // single-use instruction and thus eligible for split consideration. For // example, // // ac = a + c // ab = a + b // abc = ab + c // ab2 = ab + b // ab2c = ab2 + c // // In the first iteration, we cannot reassociate abc to ac+b because ab is used // twice. However, we can reassociate ab2c to abc+b in the first iteration. As a // result, ab2 becomes dead and ab will be used only once in the second // iteration. // // Limitations and TODO items: // // 1) We only considers n-ary adds for now. This should be extended and // generalized. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Module.h" #include "llvm/IR/PatternMatch.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/Local.h" using namespace llvm; using namespace PatternMatch; #define DEBUG_TYPE "nary-reassociate" namespace { class NaryReassociate : public FunctionPass { public: static char ID; NaryReassociate(): FunctionPass(ID) { initializeNaryReassociatePass(*PassRegistry::getPassRegistry()); } bool doInitialization(Module &M) override { DL = &M.getDataLayout(); return false; } bool runOnFunction(Function &F) override; void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.setPreservesCFG(); } private: // Runs only one iteration of the dominator-based algorithm. See the header // comments for why we need multiple iterations. bool doOneIteration(Function &F); // Reassociates I for better CSE. Instruction *tryReassociate(Instruction *I); // Reassociate GEP for better CSE. Instruction *tryReassociateGEP(GetElementPtrInst *GEP); // Try splitting GEP at the I-th index and see whether either part can be // CSE'ed. This is a helper function for tryReassociateGEP. // // \p IndexedType The element type indexed by GEP's I-th index. This is // equivalent to // GEP->getIndexedType(GEP->getPointerOperand(), 0-th index, // ..., i-th index). GetElementPtrInst *tryReassociateGEPAtIndex(GetElementPtrInst *GEP, unsigned I, Type *IndexedType); // Given GEP's I-th index = LHS + RHS, see whether &Base[..][LHS][..] or // &Base[..][RHS][..] can be CSE'ed and rewrite GEP accordingly. GetElementPtrInst *tryReassociateGEPAtIndex(GetElementPtrInst *GEP, unsigned I, Value *LHS, Value *RHS, Type *IndexedType); // Reassociate Add for better CSE. Instruction *tryReassociateAdd(BinaryOperator *I); // A helper function for tryReassociateAdd. LHS and RHS are explicitly passed. Instruction *tryReassociateAdd(Value *LHS, Value *RHS, Instruction *I); // Rewrites I to LHS + RHS if LHS is computed already. Instruction *tryReassociatedAdd(const SCEV *LHS, Value *RHS, Instruction *I); // Returns the closest dominator of \c Dominatee that computes // \c CandidateExpr. Returns null if not found. Instruction *findClosestMatchingDominator(const SCEV *CandidateExpr, Instruction *Dominatee); // GetElementPtrInst implicitly sign-extends an index if the index is shorter // than the pointer size. This function returns whether Index is shorter than // GEP's pointer size, i.e., whether Index needs to be sign-extended in order // to be an index of GEP. bool requiresSignExtension(Value *Index, GetElementPtrInst *GEP); // Returns whether V is known to be non-negative at context \c Ctxt. bool isKnownNonNegative(Value *V, Instruction *Ctxt); // Returns whether AO may sign overflow at context \c Ctxt. It computes a // conservative result -- it answers true when not sure. bool maySignOverflow(AddOperator *AO, Instruction *Ctxt); AssumptionCache *AC; const DataLayout *DL; DominatorTree *DT; ScalarEvolution *SE; TargetLibraryInfo *TLI; TargetTransformInfo *TTI; // A lookup table quickly telling which instructions compute the given SCEV. // Note that there can be multiple instructions at different locations // computing to the same SCEV, so we map a SCEV to an instruction list. For // example, // // if (p1) // foo(a + b); // if (p2) // bar(a + b); DenseMap> SeenExprs; }; } // anonymous namespace char NaryReassociate::ID = 0; INITIALIZE_PASS_BEGIN(NaryReassociate, "nary-reassociate", "Nary reassociation", false, false) INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) INITIALIZE_PASS_END(NaryReassociate, "nary-reassociate", "Nary reassociation", false, false) FunctionPass *llvm::createNaryReassociatePass() { return new NaryReassociate(); } bool NaryReassociate::runOnFunction(Function &F) { if (skipOptnoneFunction(F)) return false; AC = &getAnalysis().getAssumptionCache(F); DT = &getAnalysis().getDomTree(); SE = &getAnalysis(); TLI = &getAnalysis().getTLI(); TTI = &getAnalysis().getTTI(F); bool Changed = false, ChangedInThisIteration; do { ChangedInThisIteration = doOneIteration(F); Changed |= ChangedInThisIteration; } while (ChangedInThisIteration); return Changed; } // Whitelist the instruction types NaryReassociate handles for now. static bool isPotentiallyNaryReassociable(Instruction *I) { switch (I->getOpcode()) { case Instruction::Add: case Instruction::GetElementPtr: return true; default: return false; } } bool NaryReassociate::doOneIteration(Function &F) { bool Changed = false; SeenExprs.clear(); // Process the basic blocks in pre-order of the dominator tree. This order // ensures that all bases of a candidate are in Candidates when we process it. for (auto Node = GraphTraits::nodes_begin(DT); Node != GraphTraits::nodes_end(DT); ++Node) { BasicBlock *BB = Node->getBlock(); for (auto I = BB->begin(); I != BB->end(); ++I) { if (SE->isSCEVable(I->getType()) && isPotentiallyNaryReassociable(I)) { const SCEV *OldSCEV = SE->getSCEV(I); if (Instruction *NewI = tryReassociate(I)) { Changed = true; SE->forgetValue(I); I->replaceAllUsesWith(NewI); RecursivelyDeleteTriviallyDeadInstructions(I, TLI); I = NewI; } // Add the rewritten instruction to SeenExprs; the original instruction // is deleted. const SCEV *NewSCEV = SE->getSCEV(I); SeenExprs[NewSCEV].push_back(I); // Ideally, NewSCEV should equal OldSCEV because tryReassociate(I) // is equivalent to I. However, ScalarEvolution::getSCEV may // weaken nsw causing NewSCEV not to equal OldSCEV. For example, suppose // we reassociate // I = &a[sext(i +nsw j)] // assuming sizeof(a[0]) = 4 // to // NewI = &a[sext(i)] + sext(j). // // ScalarEvolution computes // getSCEV(I) = a + 4 * sext(i + j) // getSCEV(newI) = a + 4 * sext(i) + 4 * sext(j) // which are different SCEVs. // // To alleviate this issue of ScalarEvolution not always capturing // equivalence, we add I to SeenExprs[OldSCEV] as well so that we can // map both SCEV before and after tryReassociate(I) to I. // // This improvement is exercised in @reassociate_gep_nsw in nary-gep.ll. if (NewSCEV != OldSCEV) SeenExprs[OldSCEV].push_back(I); } } } return Changed; } Instruction *NaryReassociate::tryReassociate(Instruction *I) { switch (I->getOpcode()) { case Instruction::Add: return tryReassociateAdd(cast(I)); case Instruction::GetElementPtr: return tryReassociateGEP(cast(I)); default: llvm_unreachable("should be filtered out by isPotentiallyNaryReassociable"); } } // FIXME: extract this method into TTI->getGEPCost. static bool isGEPFoldable(GetElementPtrInst *GEP, const TargetTransformInfo *TTI, const DataLayout *DL) { GlobalVariable *BaseGV = nullptr; int64_t BaseOffset = 0; bool HasBaseReg = false; int64_t Scale = 0; if (GlobalVariable *GV = dyn_cast(GEP->getPointerOperand())) BaseGV = GV; else HasBaseReg = true; gep_type_iterator GTI = gep_type_begin(GEP); for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I, ++GTI) { if (isa(*GTI)) { int64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); if (ConstantInt *ConstIdx = dyn_cast(*I)) { BaseOffset += ConstIdx->getSExtValue() * ElementSize; } else { // Needs scale register. if (Scale != 0) { // No addressing mode takes two scale registers. return false; } Scale = ElementSize; } } else { StructType *STy = cast(*GTI); uint64_t Field = cast(*I)->getZExtValue(); BaseOffset += DL->getStructLayout(STy)->getElementOffset(Field); } } unsigned AddrSpace = GEP->getPointerAddressSpace(); return TTI->isLegalAddressingMode(GEP->getType()->getElementType(), BaseGV, BaseOffset, HasBaseReg, Scale, AddrSpace); } Instruction *NaryReassociate::tryReassociateGEP(GetElementPtrInst *GEP) { // Not worth reassociating GEP if it is foldable. if (isGEPFoldable(GEP, TTI, DL)) return nullptr; gep_type_iterator GTI = gep_type_begin(*GEP); for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I) { if (isa(*GTI++)) { if (auto *NewGEP = tryReassociateGEPAtIndex(GEP, I - 1, *GTI)) { return NewGEP; } } } return nullptr; } bool NaryReassociate::requiresSignExtension(Value *Index, GetElementPtrInst *GEP) { unsigned PointerSizeInBits = DL->getPointerSizeInBits(GEP->getType()->getPointerAddressSpace()); return cast(Index->getType())->getBitWidth() < PointerSizeInBits; } bool NaryReassociate::isKnownNonNegative(Value *V, Instruction *Ctxt) { bool NonNegative, Negative; // TODO: ComputeSignBits is expensive. Consider caching the results. ComputeSignBit(V, NonNegative, Negative, *DL, 0, AC, Ctxt, DT); return NonNegative; } bool NaryReassociate::maySignOverflow(AddOperator *AO, Instruction *Ctxt) { if (AO->hasNoSignedWrap()) return false; Value *LHS = AO->getOperand(0), *RHS = AO->getOperand(1); // If LHS or RHS has the same sign as the sum, AO doesn't sign overflow. // TODO: handle the negative case as well. if (isKnownNonNegative(AO, Ctxt) && (isKnownNonNegative(LHS, Ctxt) || isKnownNonNegative(RHS, Ctxt))) return false; return true; } GetElementPtrInst * NaryReassociate::tryReassociateGEPAtIndex(GetElementPtrInst *GEP, unsigned I, Type *IndexedType) { Value *IndexToSplit = GEP->getOperand(I + 1); if (SExtInst *SExt = dyn_cast(IndexToSplit)) { IndexToSplit = SExt->getOperand(0); } else if (ZExtInst *ZExt = dyn_cast(IndexToSplit)) { // zext can be treated as sext if the source is non-negative. if (isKnownNonNegative(ZExt->getOperand(0), GEP)) IndexToSplit = ZExt->getOperand(0); } if (AddOperator *AO = dyn_cast(IndexToSplit)) { // If the I-th index needs sext and the underlying add is not equipped with // nsw, we cannot split the add because // sext(LHS + RHS) != sext(LHS) + sext(RHS). if (requiresSignExtension(IndexToSplit, GEP) && maySignOverflow(AO, GEP)) return nullptr; Value *LHS = AO->getOperand(0), *RHS = AO->getOperand(1); // IndexToSplit = LHS + RHS. if (auto *NewGEP = tryReassociateGEPAtIndex(GEP, I, LHS, RHS, IndexedType)) return NewGEP; // Symmetrically, try IndexToSplit = RHS + LHS. if (LHS != RHS) { if (auto *NewGEP = tryReassociateGEPAtIndex(GEP, I, RHS, LHS, IndexedType)) return NewGEP; } } return nullptr; } GetElementPtrInst *NaryReassociate::tryReassociateGEPAtIndex( GetElementPtrInst *GEP, unsigned I, Value *LHS, Value *RHS, Type *IndexedType) { // Look for GEP's closest dominator that has the same SCEV as GEP except that // the I-th index is replaced with LHS. SmallVector IndexExprs; for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) IndexExprs.push_back(SE->getSCEV(*Index)); // Replace the I-th index with LHS. IndexExprs[I] = SE->getSCEV(LHS); if (isKnownNonNegative(LHS, GEP) && DL->getTypeSizeInBits(LHS->getType()) < DL->getTypeSizeInBits(GEP->getOperand(I)->getType())) { // Zero-extend LHS if it is non-negative. InstCombine canonicalizes sext to // zext if the source operand is proved non-negative. We should do that // consistently so that CandidateExpr more likely appears before. See // @reassociate_gep_assume for an example of this canonicalization. IndexExprs[I] = SE->getZeroExtendExpr(IndexExprs[I], GEP->getOperand(I)->getType()); } const SCEV *CandidateExpr = SE->getGEPExpr( GEP->getSourceElementType(), SE->getSCEV(GEP->getPointerOperand()), IndexExprs, GEP->isInBounds()); auto *Candidate = findClosestMatchingDominator(CandidateExpr, GEP); if (Candidate == nullptr) return nullptr; PointerType *TypeOfCandidate = dyn_cast(Candidate->getType()); // Pretty rare but theoretically possible when a numeric value happens to // share CandidateExpr. if (TypeOfCandidate == nullptr) return nullptr; // NewGEP = (char *)Candidate + RHS * sizeof(IndexedType) uint64_t IndexedSize = DL->getTypeAllocSize(IndexedType); Type *ElementType = TypeOfCandidate->getElementType(); uint64_t ElementSize = DL->getTypeAllocSize(ElementType); // Another less rare case: because I is not necessarily the last index of the // GEP, the size of the type at the I-th index (IndexedSize) is not // necessarily divisible by ElementSize. For example, // // #pragma pack(1) // struct S { // int a[3]; // int64 b[8]; // }; // #pragma pack() // // sizeof(S) = 100 is indivisible by sizeof(int64) = 8. // // TODO: bail out on this case for now. We could emit uglygep. if (IndexedSize % ElementSize != 0) return nullptr; // NewGEP = &Candidate[RHS * (sizeof(IndexedType) / sizeof(Candidate[0]))); IRBuilder<> Builder(GEP); Type *IntPtrTy = DL->getIntPtrType(TypeOfCandidate); if (RHS->getType() != IntPtrTy) RHS = Builder.CreateSExtOrTrunc(RHS, IntPtrTy); if (IndexedSize != ElementSize) { RHS = Builder.CreateMul( RHS, ConstantInt::get(IntPtrTy, IndexedSize / ElementSize)); } GetElementPtrInst *NewGEP = cast(Builder.CreateGEP(Candidate, RHS)); NewGEP->setIsInBounds(GEP->isInBounds()); NewGEP->takeName(GEP); return NewGEP; } Instruction *NaryReassociate::tryReassociateAdd(BinaryOperator *I) { Value *LHS = I->getOperand(0), *RHS = I->getOperand(1); if (auto *NewI = tryReassociateAdd(LHS, RHS, I)) return NewI; if (auto *NewI = tryReassociateAdd(RHS, LHS, I)) return NewI; return nullptr; } Instruction *NaryReassociate::tryReassociateAdd(Value *LHS, Value *RHS, Instruction *I) { Value *A = nullptr, *B = nullptr; // To be conservative, we reassociate I only when it is the only user of A+B. if (LHS->hasOneUse() && match(LHS, m_Add(m_Value(A), m_Value(B)))) { // I = (A + B) + RHS // = (A + RHS) + B or (B + RHS) + A const SCEV *AExpr = SE->getSCEV(A), *BExpr = SE->getSCEV(B); const SCEV *RHSExpr = SE->getSCEV(RHS); if (BExpr != RHSExpr) { if (auto *NewI = tryReassociatedAdd(SE->getAddExpr(AExpr, RHSExpr), B, I)) return NewI; } if (AExpr != RHSExpr) { if (auto *NewI = tryReassociatedAdd(SE->getAddExpr(BExpr, RHSExpr), A, I)) return NewI; } } return nullptr; } Instruction *NaryReassociate::tryReassociatedAdd(const SCEV *LHSExpr, Value *RHS, Instruction *I) { // Look for the closest dominator LHS of I that computes LHSExpr, and replace // I with LHS + RHS. auto *LHS = findClosestMatchingDominator(LHSExpr, I); if (LHS == nullptr) return nullptr; Instruction *NewI = BinaryOperator::CreateAdd(LHS, RHS, "", I); NewI->takeName(I); return NewI; } Instruction * NaryReassociate::findClosestMatchingDominator(const SCEV *CandidateExpr, Instruction *Dominatee) { auto Pos = SeenExprs.find(CandidateExpr); if (Pos == SeenExprs.end()) return nullptr; auto &Candidates = Pos->second; // Because we process the basic blocks in pre-order of the dominator tree, a // candidate that doesn't dominate the current instruction won't dominate any // future instruction either. Therefore, we pop it out of the stack. This // optimization makes the algorithm O(n). while (!Candidates.empty()) { Instruction *Candidate = Candidates.back(); if (DT->dominates(Candidate, Dominatee)) return Candidate; Candidates.pop_back(); } return nullptr; }