//===--- examples/Fibonacci/fibonacci.cpp - An example use of the JIT -----===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This small program provides an example of how to build quickly a small module // with function Fibonacci and execute it with the JIT. // // The goal of this snippet is to create in the memory the LLVM module // consisting of one function as follow: // // int fib(int x) { // if(x<=2) return 1; // return fib(x-1)+fib(x-2); // } // // Once we have this, we compile the module via JIT, then execute the `fib' // function and return result to a driver, i.e. to a "host program". // //===----------------------------------------------------------------------===// #include "llvm/Module.h" #include "llvm/DerivedTypes.h" #include "llvm/Constants.h" #include "llvm/Instructions.h" #include "llvm/ModuleProvider.h" #include "llvm/Analysis/Verifier.h" #include "llvm/ExecutionEngine/JIT.h" #include "llvm/ExecutionEngine/Interpreter.h" #include "llvm/ExecutionEngine/GenericValue.h" #include using namespace llvm; static Function *CreateFibFunction(Module *M) { // Create the fib function and insert it into module M. This function is said // to return an int and take an int parameter. Function *FibF = cast(M->getOrInsertFunction("fib", Type::Int32Ty, Type::Int32Ty, (Type *)0)); // Add a basic block to the function. BasicBlock *BB = new BasicBlock("EntryBlock", FibF); // Get pointers to the constants. Value *One = ConstantInt::get(Type::Int32Ty, 1); Value *Two = ConstantInt::get(Type::Int32Ty, 2); // Get pointer to the integer argument of the add1 function... Argument *ArgX = FibF->arg_begin(); // Get the arg. ArgX->setName("AnArg"); // Give it a nice symbolic name for fun. // Create the true_block. BasicBlock *RetBB = new BasicBlock("return", FibF); // Create an exit block. BasicBlock* RecurseBB = new BasicBlock("recurse", FibF); // Create the "if (arg < 2) goto exitbb" Value *CondInst = new ICmpInst(ICmpInst::ICMP_SLE, ArgX, Two, "cond", BB); new BranchInst(RetBB, RecurseBB, CondInst, BB); // Create: ret int 1 new ReturnInst(One, RetBB); // create fib(x-1) Value *Sub = BinaryOperator::createSub(ArgX, One, "arg", RecurseBB); CallInst *CallFibX1 = new CallInst(FibF, Sub, "fibx1", RecurseBB); CallFibX1->setTailCall(); // create fib(x-2) Sub = BinaryOperator::createSub(ArgX, Two, "arg", RecurseBB); CallInst *CallFibX2 = new CallInst(FibF, Sub, "fibx2", RecurseBB); CallFibX2->setTailCall(); // fib(x-1)+fib(x-2) Value *Sum = BinaryOperator::createAdd(CallFibX1, CallFibX2, "addresult", RecurseBB); // Create the return instruction and add it to the basic block new ReturnInst(Sum, RecurseBB); return FibF; } int main(int argc, char **argv) { int n = argc > 1 ? atol(argv[1]) : 24; // Create some module to put our function into it. Module *M = new Module("test"); // We are about to create the "fib" function: Function *FibF = CreateFibFunction(M); // Now we going to create JIT ExistingModuleProvider *MP = new ExistingModuleProvider(M); ExecutionEngine *EE = ExecutionEngine::create(MP, false); std::cerr << "verifying... "; if (verifyModule(*M)) { std::cerr << argv[0] << ": Error constructing function!\n"; return 1; } std::cerr << "OK\n"; std::cerr << "We just constructed this LLVM module:\n\n---------\n" << *M; std::cerr << "---------\nstarting fibonacci(" << n << ") with JIT...\n"; // Call the Fibonacci function with argument n: std::vector Args(1); Args[0].IntVal = APInt(32, n); GenericValue GV = EE->runFunction(FibF, Args); // import result of execution std::cout << "Result: " << GV.IntVal.toStringUnsigned(10) << "\n"; return 0; }