//===-- MachineCSE.cpp - Machine Common Subexpression Elimination Pass ----===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass performs global common subexpression elimination on machine // instructions using a scoped hash table based value numbering scheme. It // must be run while the machine function is still in SSA form. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "machine-cse" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/ADT/ScopedHashTable.h" #include "llvm/ADT/Statistic.h" #include "llvm/Support/Debug.h" using namespace llvm; STATISTIC(NumCoalesces, "Number of copies coalesced"); STATISTIC(NumCSEs, "Number of common subexpression eliminated"); namespace { class MachineCSE : public MachineFunctionPass { const TargetInstrInfo *TII; const TargetRegisterInfo *TRI; AliasAnalysis *AA; MachineDominatorTree *DT; MachineRegisterInfo *MRI; public: static char ID; // Pass identification MachineCSE() : MachineFunctionPass(&ID), CurrVN(0) {} virtual bool runOnMachineFunction(MachineFunction &MF); virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); MachineFunctionPass::getAnalysisUsage(AU); AU.addRequired(); AU.addRequired(); AU.addPreserved(); } private: unsigned CurrVN; ScopedHashTable VNT; SmallVector Exps; bool PerformTrivialCoalescing(MachineInstr *MI, MachineBasicBlock *MBB); bool isPhysDefTriviallyDead(unsigned Reg, MachineBasicBlock::const_iterator I, MachineBasicBlock::const_iterator E); bool hasLivePhysRegDefUse(MachineInstr *MI, MachineBasicBlock *MBB); bool isCSECandidate(MachineInstr *MI); bool isProfitableToCSE(unsigned CSReg, unsigned Reg, MachineInstr *CSMI, MachineInstr *MI); bool ProcessBlock(MachineDomTreeNode *Node); }; } // end anonymous namespace char MachineCSE::ID = 0; static RegisterPass X("machine-cse", "Machine Common Subexpression Elimination"); FunctionPass *llvm::createMachineCSEPass() { return new MachineCSE(); } bool MachineCSE::PerformTrivialCoalescing(MachineInstr *MI, MachineBasicBlock *MBB) { bool Changed = false; for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (!MO.isReg() || !MO.isUse()) continue; unsigned Reg = MO.getReg(); if (!Reg || TargetRegisterInfo::isPhysicalRegister(Reg)) continue; if (!MRI->hasOneUse(Reg)) // Only coalesce single use copies. This ensure the copy will be // deleted. continue; MachineInstr *DefMI = MRI->getVRegDef(Reg); if (DefMI->getParent() != MBB) continue; unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx; if (TII->isMoveInstr(*DefMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) && TargetRegisterInfo::isVirtualRegister(SrcReg) && !SrcSubIdx && !DstSubIdx) { const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg); const TargetRegisterClass *RC = MRI->getRegClass(Reg); const TargetRegisterClass *NewRC = getCommonSubClass(RC, SRC); if (!NewRC) continue; DEBUG(dbgs() << "Coalescing: " << *DefMI); DEBUG(dbgs() << "*** to: " << *MI); MO.setReg(SrcReg); if (NewRC != SRC) MRI->setRegClass(SrcReg, NewRC); DefMI->eraseFromParent(); ++NumCoalesces; Changed = true; } } return Changed; } bool MachineCSE::isPhysDefTriviallyDead(unsigned Reg, MachineBasicBlock::const_iterator I, MachineBasicBlock::const_iterator E) { unsigned LookAheadLeft = 5; while (LookAheadLeft--) { if (I == E) // Reached end of block, register is obviously dead. return true; if (I->isDebugValue()) continue; bool SeenDef = false; for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { const MachineOperand &MO = I->getOperand(i); if (!MO.isReg() || !MO.getReg()) continue; if (!TRI->regsOverlap(MO.getReg(), Reg)) continue; if (MO.isUse()) return false; SeenDef = true; } if (SeenDef) // See a def of Reg (or an alias) before encountering any use, it's // trivially dead. return true; ++I; } return false; } /// hasLivePhysRegDefUse - Return true if the specified instruction read / write /// physical registers (except for dead defs of physical registers). bool MachineCSE::hasLivePhysRegDefUse(MachineInstr *MI, MachineBasicBlock *MBB){ unsigned PhysDef = 0; for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (!Reg) continue; if (TargetRegisterInfo::isPhysicalRegister(Reg)) { if (MO.isUse()) // Can't touch anything to read a physical register. return true; if (MO.isDead()) // If the def is dead, it's ok. continue; // Ok, this is a physical register def that's not marked "dead". That's // common since this pass is run before livevariables. We can scan // forward a few instructions and check if it is obviously dead. if (PhysDef) // Multiple physical register defs. These are rare, forget about it. return true; PhysDef = Reg; } } if (PhysDef) { MachineBasicBlock::iterator I = MI; I = llvm::next(I); if (!isPhysDefTriviallyDead(PhysDef, I, MBB->end())) return true; } return false; } static bool isCopy(const MachineInstr *MI, const TargetInstrInfo *TII) { unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx; return TII->isMoveInstr(*MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) || MI->isExtractSubreg() || MI->isInsertSubreg() || MI->isSubregToReg(); } bool MachineCSE::isCSECandidate(MachineInstr *MI) { if (MI->isLabel() || MI->isPHI() || MI->isImplicitDef() || MI->isKill() || MI->isInlineAsm()) return false; // Ignore copies. if (isCopy(MI, TII)) return false; // Ignore stuff that we obviously can't move. const TargetInstrDesc &TID = MI->getDesc(); if (TID.mayStore() || TID.isCall() || TID.isTerminator() || TID.hasUnmodeledSideEffects()) return false; if (TID.mayLoad()) { // Okay, this instruction does a load. As a refinement, we allow the target // to decide whether the loaded value is actually a constant. If so, we can // actually use it as a load. if (!MI->isInvariantLoad(AA)) // FIXME: we should be able to hoist loads with no other side effects if // there are no other instructions which can change memory in this loop. // This is a trivial form of alias analysis. return false; } return true; } /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a /// common expression that defines Reg. bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned Reg, MachineInstr *CSMI, MachineInstr *MI) { // FIXME: Heuristics that works around the lack the live range splitting. // Heuristics #1: Don't cse "cheap" computating if the def is not local or in an // immediate predecessor. We don't want to increase register pressure and end up // causing other computation to be spilled. if (MI->getDesc().isAsCheapAsAMove()) { MachineBasicBlock *CSBB = CSMI->getParent(); MachineBasicBlock *BB = MI->getParent(); if (CSBB != BB && find(CSBB->succ_begin(), CSBB->succ_end(), BB) == CSBB->succ_end()) return false; } // Heuristics #2: If the expression doesn't not use a vr and the only use // of the redundant computation are copies, do not cse. bool HasVRegUse = false; for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI->getOperand(i); if (MO.isReg() && MO.isUse() && MO.getReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) { HasVRegUse = true; break; } } if (!HasVRegUse) { bool HasNonCopyUse = false; for (MachineRegisterInfo::use_nodbg_iterator I = MRI->use_nodbg_begin(Reg), E = MRI->use_nodbg_end(); I != E; ++I) { MachineInstr *Use = &*I; // Ignore copies. if (!isCopy(Use, TII)) { HasNonCopyUse = true; break; } } if (!HasNonCopyUse) return false; } // Heuristics #3: If the common subexpression is used by PHIs, do not reuse // it unless the defined value is already used in the BB of the new use. bool HasPHI = false; SmallPtrSet CSBBs; for (MachineRegisterInfo::use_nodbg_iterator I = MRI->use_nodbg_begin(CSReg), E = MRI->use_nodbg_end(); I != E; ++I) { MachineInstr *Use = &*I; HasPHI |= Use->isPHI(); CSBBs.insert(Use->getParent()); } if (!HasPHI) return true; return CSBBs.count(MI->getParent()); } bool MachineCSE::ProcessBlock(MachineDomTreeNode *Node) { bool Changed = false; SmallVector, 8> CSEPairs; ScopedHashTableScope VNTS(VNT); MachineBasicBlock *MBB = Node->getBlock(); for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) { MachineInstr *MI = &*I; ++I; if (!isCSECandidate(MI)) continue; bool FoundCSE = VNT.count(MI); if (!FoundCSE) { // Look for trivial copy coalescing opportunities. if (PerformTrivialCoalescing(MI, MBB)) FoundCSE = VNT.count(MI); } // FIXME: commute commutable instructions? // If the instruction defines a physical register and the value *may* be // used, then it's not safe to replace it with a common subexpression. if (FoundCSE && hasLivePhysRegDefUse(MI, MBB)) FoundCSE = false; if (!FoundCSE) { VNT.insert(MI, CurrVN++); Exps.push_back(MI); continue; } // Found a common subexpression, eliminate it. unsigned CSVN = VNT.lookup(MI); MachineInstr *CSMI = Exps[CSVN]; DEBUG(dbgs() << "Examining: " << *MI); DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI); // Check if it's profitable to perform this CSE. bool DoCSE = true; unsigned NumDefs = MI->getDesc().getNumDefs(); for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (!MO.isReg() || !MO.isDef()) continue; unsigned OldReg = MO.getReg(); unsigned NewReg = CSMI->getOperand(i).getReg(); if (OldReg == NewReg) continue; assert(TargetRegisterInfo::isVirtualRegister(OldReg) && TargetRegisterInfo::isVirtualRegister(NewReg) && "Do not CSE physical register defs!"); if (!isProfitableToCSE(NewReg, OldReg, CSMI, MI)) { DoCSE = false; break; } CSEPairs.push_back(std::make_pair(OldReg, NewReg)); --NumDefs; } // Actually perform the elimination. if (DoCSE) { for (unsigned i = 0, e = CSEPairs.size(); i != e; ++i) MRI->replaceRegWith(CSEPairs[i].first, CSEPairs[i].second); MI->eraseFromParent(); ++NumCSEs; } else { DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n"); VNT.insert(MI, CurrVN++); Exps.push_back(MI); } CSEPairs.clear(); } // Recursively call ProcessBlock with childred. const std::vector &Children = Node->getChildren(); for (unsigned i = 0, e = Children.size(); i != e; ++i) Changed |= ProcessBlock(Children[i]); return Changed; } bool MachineCSE::runOnMachineFunction(MachineFunction &MF) { TII = MF.getTarget().getInstrInfo(); TRI = MF.getTarget().getRegisterInfo(); MRI = &MF.getRegInfo(); AA = &getAnalysis(); DT = &getAnalysis(); return ProcessBlock(DT->getRootNode()); }