//===- X86RecognizableInstr.cpp - Disassembler instruction spec --*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is part of the X86 Disassembler Emitter. // It contains the implementation of a single recognizable instruction. // Documentation for the disassembler emitter in general can be found in // X86DisasemblerEmitter.h. // //===----------------------------------------------------------------------===// #include "X86RecognizableInstr.h" #include "X86DisassemblerShared.h" #include "X86ModRMFilters.h" #include "llvm/Support/ErrorHandling.h" #include using namespace llvm; #define MRM_MAPPING \ MAP(C0, 32) \ MAP(C1, 33) \ MAP(C2, 34) \ MAP(C3, 35) \ MAP(C4, 36) \ MAP(C8, 37) \ MAP(C9, 38) \ MAP(CA, 39) \ MAP(CB, 40) \ MAP(D0, 41) \ MAP(D1, 42) \ MAP(D4, 43) \ MAP(D5, 44) \ MAP(D6, 45) \ MAP(D8, 46) \ MAP(D9, 47) \ MAP(DA, 48) \ MAP(DB, 49) \ MAP(DC, 50) \ MAP(DD, 51) \ MAP(DE, 52) \ MAP(DF, 53) \ MAP(E0, 54) \ MAP(E1, 55) \ MAP(E2, 56) \ MAP(E3, 57) \ MAP(E4, 58) \ MAP(E5, 59) \ MAP(E8, 60) \ MAP(E9, 61) \ MAP(EA, 62) \ MAP(EB, 63) \ MAP(EC, 64) \ MAP(ED, 65) \ MAP(EE, 66) \ MAP(F0, 67) \ MAP(F1, 68) \ MAP(F2, 69) \ MAP(F3, 70) \ MAP(F4, 71) \ MAP(F5, 72) \ MAP(F6, 73) \ MAP(F7, 74) \ MAP(F8, 75) \ MAP(F9, 76) \ MAP(FA, 77) \ MAP(FB, 78) \ MAP(FC, 79) \ MAP(FD, 80) \ MAP(FE, 81) \ MAP(FF, 82) // A clone of X86 since we can't depend on something that is generated. namespace X86Local { enum { Pseudo = 0, RawFrm = 1, AddRegFrm = 2, MRMDestReg = 3, MRMDestMem = 4, MRMSrcReg = 5, MRMSrcMem = 6, RawFrmMemOffs = 7, RawFrmSrc = 8, RawFrmDst = 9, RawFrmDstSrc = 10, RawFrmImm8 = 11, RawFrmImm16 = 12, MRMXr = 14, MRMXm = 15, MRM0r = 16, MRM1r = 17, MRM2r = 18, MRM3r = 19, MRM4r = 20, MRM5r = 21, MRM6r = 22, MRM7r = 23, MRM0m = 24, MRM1m = 25, MRM2m = 26, MRM3m = 27, MRM4m = 28, MRM5m = 29, MRM6m = 30, MRM7m = 31, #define MAP(from, to) MRM_##from = to, MRM_MAPPING #undef MAP lastMRM }; enum { OB = 0, TB = 1, T8 = 2, TA = 3, XOP8 = 4, XOP9 = 5, XOPA = 6 }; enum { PS = 1, PD = 2, XS = 3, XD = 4 }; enum { VEX = 1, XOP = 2, EVEX = 3 }; enum { OpSize16 = 1, OpSize32 = 2 }; } using namespace X86Disassembler; /// isRegFormat - Indicates whether a particular form requires the Mod field of /// the ModR/M byte to be 0b11. /// /// @param form - The form of the instruction. /// @return - true if the form implies that Mod must be 0b11, false /// otherwise. static bool isRegFormat(uint8_t form) { return (form == X86Local::MRMDestReg || form == X86Local::MRMSrcReg || form == X86Local::MRMXr || (form >= X86Local::MRM0r && form <= X86Local::MRM7r)); } /// byteFromBitsInit - Extracts a value at most 8 bits in width from a BitsInit. /// Useful for switch statements and the like. /// /// @param init - A reference to the BitsInit to be decoded. /// @return - The field, with the first bit in the BitsInit as the lowest /// order bit. static uint8_t byteFromBitsInit(BitsInit &init) { int width = init.getNumBits(); assert(width <= 8 && "Field is too large for uint8_t!"); int index; uint8_t mask = 0x01; uint8_t ret = 0; for (index = 0; index < width; index++) { if (static_cast(init.getBit(index))->getValue()) ret |= mask; mask <<= 1; } return ret; } /// byteFromRec - Extract a value at most 8 bits in with from a Record given the /// name of the field. /// /// @param rec - The record from which to extract the value. /// @param name - The name of the field in the record. /// @return - The field, as translated by byteFromBitsInit(). static uint8_t byteFromRec(const Record* rec, const std::string &name) { BitsInit* bits = rec->getValueAsBitsInit(name); return byteFromBitsInit(*bits); } RecognizableInstr::RecognizableInstr(DisassemblerTables &tables, const CodeGenInstruction &insn, InstrUID uid) { UID = uid; Rec = insn.TheDef; Name = Rec->getName(); Spec = &tables.specForUID(UID); if (!Rec->isSubClassOf("X86Inst")) { ShouldBeEmitted = false; return; } OpPrefix = byteFromRec(Rec, "OpPrefixBits"); OpMap = byteFromRec(Rec, "OpMapBits"); Opcode = byteFromRec(Rec, "Opcode"); Form = byteFromRec(Rec, "FormBits"); Encoding = byteFromRec(Rec, "OpEncBits"); OpSize = byteFromRec(Rec, "OpSizeBits"); HasAdSizePrefix = Rec->getValueAsBit("hasAdSizePrefix"); HasREX_WPrefix = Rec->getValueAsBit("hasREX_WPrefix"); HasVEX_4V = Rec->getValueAsBit("hasVEX_4V"); HasVEX_4VOp3 = Rec->getValueAsBit("hasVEX_4VOp3"); HasVEX_WPrefix = Rec->getValueAsBit("hasVEX_WPrefix"); HasMemOp4Prefix = Rec->getValueAsBit("hasMemOp4Prefix"); IgnoresVEX_L = Rec->getValueAsBit("ignoresVEX_L"); HasEVEX_L2Prefix = Rec->getValueAsBit("hasEVEX_L2"); HasEVEX_K = Rec->getValueAsBit("hasEVEX_K"); HasEVEX_KZ = Rec->getValueAsBit("hasEVEX_Z"); HasEVEX_B = Rec->getValueAsBit("hasEVEX_B"); IsCodeGenOnly = Rec->getValueAsBit("isCodeGenOnly"); ForceDisassemble = Rec->getValueAsBit("ForceDisassemble"); CD8_Scale = byteFromRec(Rec, "CD8_Scale"); Name = Rec->getName(); AsmString = Rec->getValueAsString("AsmString"); Operands = &insn.Operands.OperandList; HasVEX_LPrefix = Rec->getValueAsBit("hasVEX_L"); // Check for 64-bit inst which does not require REX Is32Bit = false; Is64Bit = false; // FIXME: Is there some better way to check for In64BitMode? std::vector Predicates = Rec->getValueAsListOfDefs("Predicates"); for (unsigned i = 0, e = Predicates.size(); i != e; ++i) { if (Predicates[i]->getName().find("Not64Bit") != Name.npos || Predicates[i]->getName().find("In32Bit") != Name.npos) { Is32Bit = true; break; } if (Predicates[i]->getName().find("In64Bit") != Name.npos) { Is64Bit = true; break; } } if (Form == X86Local::Pseudo || (IsCodeGenOnly && !ForceDisassemble)) { ShouldBeEmitted = false; return; } // Special case since there is no attribute class for 64-bit and VEX if (Name == "VMASKMOVDQU64") { ShouldBeEmitted = false; return; } ShouldBeEmitted = true; } void RecognizableInstr::processInstr(DisassemblerTables &tables, const CodeGenInstruction &insn, InstrUID uid) { // Ignore "asm parser only" instructions. if (insn.TheDef->getValueAsBit("isAsmParserOnly")) return; RecognizableInstr recogInstr(tables, insn, uid); if (recogInstr.shouldBeEmitted()) { recogInstr.emitInstructionSpecifier(); recogInstr.emitDecodePath(tables); } } #define EVEX_KB(n) (HasEVEX_KZ && HasEVEX_B ? n##_KZ_B : \ (HasEVEX_K && HasEVEX_B ? n##_K_B : \ (HasEVEX_KZ ? n##_KZ : \ (HasEVEX_K? n##_K : (HasEVEX_B ? n##_B : n))))) InstructionContext RecognizableInstr::insnContext() const { InstructionContext insnContext; if (Encoding == X86Local::EVEX) { if (HasVEX_LPrefix && HasEVEX_L2Prefix) { errs() << "Don't support VEX.L if EVEX_L2 is enabled: " << Name << "\n"; llvm_unreachable("Don't support VEX.L if EVEX_L2 is enabled"); } // VEX_L & VEX_W if (HasVEX_LPrefix && HasVEX_WPrefix) { if (OpPrefix == X86Local::PD) insnContext = EVEX_KB(IC_EVEX_L_W_OPSIZE); else if (OpPrefix == X86Local::XS) insnContext = EVEX_KB(IC_EVEX_L_W_XS); else if (OpPrefix == X86Local::XD) insnContext = EVEX_KB(IC_EVEX_L_W_XD); else if (OpPrefix == X86Local::PS) insnContext = EVEX_KB(IC_EVEX_L_W); else { errs() << "Instruction does not use a prefix: " << Name << "\n"; llvm_unreachable("Invalid prefix"); } } else if (HasVEX_LPrefix) { // VEX_L if (OpPrefix == X86Local::PD) insnContext = EVEX_KB(IC_EVEX_L_OPSIZE); else if (OpPrefix == X86Local::XS) insnContext = EVEX_KB(IC_EVEX_L_XS); else if (OpPrefix == X86Local::XD) insnContext = EVEX_KB(IC_EVEX_L_XD); else if (OpPrefix == X86Local::PS) insnContext = EVEX_KB(IC_EVEX_L); else { errs() << "Instruction does not use a prefix: " << Name << "\n"; llvm_unreachable("Invalid prefix"); } } else if (HasEVEX_L2Prefix && HasVEX_WPrefix) { // EVEX_L2 & VEX_W if (OpPrefix == X86Local::PD) insnContext = EVEX_KB(IC_EVEX_L2_W_OPSIZE); else if (OpPrefix == X86Local::XS) insnContext = EVEX_KB(IC_EVEX_L2_W_XS); else if (OpPrefix == X86Local::XD) insnContext = EVEX_KB(IC_EVEX_L2_W_XD); else if (OpPrefix == X86Local::PS) insnContext = EVEX_KB(IC_EVEX_L2_W); else { errs() << "Instruction does not use a prefix: " << Name << "\n"; llvm_unreachable("Invalid prefix"); } } else if (HasEVEX_L2Prefix) { // EVEX_L2 if (OpPrefix == X86Local::PD) insnContext = EVEX_KB(IC_EVEX_L2_OPSIZE); else if (OpPrefix == X86Local::XD) insnContext = EVEX_KB(IC_EVEX_L2_XD); else if (OpPrefix == X86Local::XS) insnContext = EVEX_KB(IC_EVEX_L2_XS); else if (OpPrefix == X86Local::PS) insnContext = EVEX_KB(IC_EVEX_L2); else { errs() << "Instruction does not use a prefix: " << Name << "\n"; llvm_unreachable("Invalid prefix"); } } else if (HasVEX_WPrefix) { // VEX_W if (OpPrefix == X86Local::PD) insnContext = EVEX_KB(IC_EVEX_W_OPSIZE); else if (OpPrefix == X86Local::XS) insnContext = EVEX_KB(IC_EVEX_W_XS); else if (OpPrefix == X86Local::XD) insnContext = EVEX_KB(IC_EVEX_W_XD); else if (OpPrefix == X86Local::PS) insnContext = EVEX_KB(IC_EVEX_W); else { errs() << "Instruction does not use a prefix: " << Name << "\n"; llvm_unreachable("Invalid prefix"); } } // No L, no W else if (OpPrefix == X86Local::PD) insnContext = EVEX_KB(IC_EVEX_OPSIZE); else if (OpPrefix == X86Local::XD) insnContext = EVEX_KB(IC_EVEX_XD); else if (OpPrefix == X86Local::XS) insnContext = EVEX_KB(IC_EVEX_XS); else insnContext = EVEX_KB(IC_EVEX); /// eof EVEX } else if (Encoding == X86Local::VEX || Encoding == X86Local::XOP) { if (HasVEX_LPrefix && HasVEX_WPrefix) { if (OpPrefix == X86Local::PD) insnContext = IC_VEX_L_W_OPSIZE; else if (OpPrefix == X86Local::XS) insnContext = IC_VEX_L_W_XS; else if (OpPrefix == X86Local::XD) insnContext = IC_VEX_L_W_XD; else if (OpPrefix == X86Local::PS) insnContext = IC_VEX_L_W; else { errs() << "Instruction does not use a prefix: " << Name << "\n"; llvm_unreachable("Invalid prefix"); } } else if (OpPrefix == X86Local::PD && HasVEX_LPrefix) insnContext = IC_VEX_L_OPSIZE; else if (OpPrefix == X86Local::PD && HasVEX_WPrefix) insnContext = IC_VEX_W_OPSIZE; else if (OpPrefix == X86Local::PD) insnContext = IC_VEX_OPSIZE; else if (HasVEX_LPrefix && OpPrefix == X86Local::XS) insnContext = IC_VEX_L_XS; else if (HasVEX_LPrefix && OpPrefix == X86Local::XD) insnContext = IC_VEX_L_XD; else if (HasVEX_WPrefix && OpPrefix == X86Local::XS) insnContext = IC_VEX_W_XS; else if (HasVEX_WPrefix && OpPrefix == X86Local::XD) insnContext = IC_VEX_W_XD; else if (HasVEX_WPrefix && OpPrefix == X86Local::PS) insnContext = IC_VEX_W; else if (HasVEX_LPrefix && OpPrefix == X86Local::PS) insnContext = IC_VEX_L; else if (OpPrefix == X86Local::XD) insnContext = IC_VEX_XD; else if (OpPrefix == X86Local::XS) insnContext = IC_VEX_XS; else if (OpPrefix == X86Local::PS) insnContext = IC_VEX; else { errs() << "Instruction does not use a prefix: " << Name << "\n"; llvm_unreachable("Invalid prefix"); } } else if (Is64Bit || HasREX_WPrefix) { if (HasREX_WPrefix && (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD)) insnContext = IC_64BIT_REXW_OPSIZE; else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XD) insnContext = IC_64BIT_XD_OPSIZE; else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XS) insnContext = IC_64BIT_XS_OPSIZE; else if (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD) insnContext = IC_64BIT_OPSIZE; else if (HasAdSizePrefix) insnContext = IC_64BIT_ADSIZE; else if (HasREX_WPrefix && OpPrefix == X86Local::XS) insnContext = IC_64BIT_REXW_XS; else if (HasREX_WPrefix && OpPrefix == X86Local::XD) insnContext = IC_64BIT_REXW_XD; else if (OpPrefix == X86Local::XD) insnContext = IC_64BIT_XD; else if (OpPrefix == X86Local::XS) insnContext = IC_64BIT_XS; else if (HasREX_WPrefix) insnContext = IC_64BIT_REXW; else insnContext = IC_64BIT; } else { if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XD) insnContext = IC_XD_OPSIZE; else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XS) insnContext = IC_XS_OPSIZE; else if (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD) insnContext = IC_OPSIZE; else if (HasAdSizePrefix) insnContext = IC_ADSIZE; else if (OpPrefix == X86Local::XD) insnContext = IC_XD; else if (OpPrefix == X86Local::XS) insnContext = IC_XS; else insnContext = IC; } return insnContext; } void RecognizableInstr::adjustOperandEncoding(OperandEncoding &encoding) { // The scaling factor for AVX512 compressed displacement encoding is an // instruction attribute. Adjust the ModRM encoding type to include the // scale for compressed displacement. if (encoding != ENCODING_RM || CD8_Scale == 0) return; encoding = (OperandEncoding)(encoding + Log2_32(CD8_Scale)); assert(encoding <= ENCODING_RM_CD64 && "Invalid CDisp scaling"); } void RecognizableInstr::handleOperand(bool optional, unsigned &operandIndex, unsigned &physicalOperandIndex, unsigned &numPhysicalOperands, const unsigned *operandMapping, OperandEncoding (*encodingFromString) (const std::string&, uint8_t OpSize)) { if (optional) { if (physicalOperandIndex >= numPhysicalOperands) return; } else { assert(physicalOperandIndex < numPhysicalOperands); } while (operandMapping[operandIndex] != operandIndex) { Spec->operands[operandIndex].encoding = ENCODING_DUP; Spec->operands[operandIndex].type = (OperandType)(TYPE_DUP0 + operandMapping[operandIndex]); ++operandIndex; } const std::string &typeName = (*Operands)[operandIndex].Rec->getName(); OperandEncoding encoding = encodingFromString(typeName, OpSize); // Adjust the encoding type for an operand based on the instruction. adjustOperandEncoding(encoding); Spec->operands[operandIndex].encoding = encoding; Spec->operands[operandIndex].type = typeFromString(typeName, HasREX_WPrefix, OpSize); ++operandIndex; ++physicalOperandIndex; } void RecognizableInstr::emitInstructionSpecifier() { Spec->name = Name; Spec->insnContext = insnContext(); const std::vector &OperandList = *Operands; unsigned numOperands = OperandList.size(); unsigned numPhysicalOperands = 0; // operandMapping maps from operands in OperandList to their originals. // If operandMapping[i] != i, then the entry is a duplicate. unsigned operandMapping[X86_MAX_OPERANDS]; assert(numOperands <= X86_MAX_OPERANDS && "X86_MAX_OPERANDS is not large enough"); for (unsigned operandIndex = 0; operandIndex < numOperands; ++operandIndex) { if (OperandList[operandIndex].Constraints.size()) { const CGIOperandList::ConstraintInfo &Constraint = OperandList[operandIndex].Constraints[0]; if (Constraint.isTied()) { operandMapping[operandIndex] = operandIndex; operandMapping[Constraint.getTiedOperand()] = operandIndex; } else { ++numPhysicalOperands; operandMapping[operandIndex] = operandIndex; } } else { ++numPhysicalOperands; operandMapping[operandIndex] = operandIndex; } } #define HANDLE_OPERAND(class) \ handleOperand(false, \ operandIndex, \ physicalOperandIndex, \ numPhysicalOperands, \ operandMapping, \ class##EncodingFromString); #define HANDLE_OPTIONAL(class) \ handleOperand(true, \ operandIndex, \ physicalOperandIndex, \ numPhysicalOperands, \ operandMapping, \ class##EncodingFromString); // operandIndex should always be < numOperands unsigned operandIndex = 0; // physicalOperandIndex should always be < numPhysicalOperands unsigned physicalOperandIndex = 0; switch (Form) { default: llvm_unreachable("Unhandled form"); case X86Local::RawFrmSrc: HANDLE_OPERAND(relocation); return; case X86Local::RawFrmDst: HANDLE_OPERAND(relocation); return; case X86Local::RawFrmDstSrc: HANDLE_OPERAND(relocation); HANDLE_OPERAND(relocation); return; case X86Local::RawFrm: // Operand 1 (optional) is an address or immediate. // Operand 2 (optional) is an immediate. assert(numPhysicalOperands <= 2 && "Unexpected number of operands for RawFrm"); HANDLE_OPTIONAL(relocation) HANDLE_OPTIONAL(immediate) break; case X86Local::RawFrmMemOffs: // Operand 1 is an address. HANDLE_OPERAND(relocation); break; case X86Local::AddRegFrm: // Operand 1 is added to the opcode. // Operand 2 (optional) is an address. assert(numPhysicalOperands >= 1 && numPhysicalOperands <= 2 && "Unexpected number of operands for AddRegFrm"); HANDLE_OPERAND(opcodeModifier) HANDLE_OPTIONAL(relocation) break; case X86Local::MRMDestReg: // Operand 1 is a register operand in the R/M field. // Operand 2 is a register operand in the Reg/Opcode field. // - In AVX, there is a register operand in the VEX.vvvv field here - // Operand 3 (optional) is an immediate. if (HasVEX_4V) assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 4 && "Unexpected number of operands for MRMDestRegFrm with VEX_4V"); else assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 && "Unexpected number of operands for MRMDestRegFrm"); HANDLE_OPERAND(rmRegister) if (HasVEX_4V) // FIXME: In AVX, the register below becomes the one encoded // in ModRMVEX and the one above the one in the VEX.VVVV field HANDLE_OPERAND(vvvvRegister) HANDLE_OPERAND(roRegister) HANDLE_OPTIONAL(immediate) break; case X86Local::MRMDestMem: // Operand 1 is a memory operand (possibly SIB-extended) // Operand 2 is a register operand in the Reg/Opcode field. // - In AVX, there is a register operand in the VEX.vvvv field here - // Operand 3 (optional) is an immediate. if (HasVEX_4V) assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 4 && "Unexpected number of operands for MRMDestMemFrm with VEX_4V"); else assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 && "Unexpected number of operands for MRMDestMemFrm"); HANDLE_OPERAND(memory) if (HasEVEX_K) HANDLE_OPERAND(writemaskRegister) if (HasVEX_4V) // FIXME: In AVX, the register below becomes the one encoded // in ModRMVEX and the one above the one in the VEX.VVVV field HANDLE_OPERAND(vvvvRegister) HANDLE_OPERAND(roRegister) HANDLE_OPTIONAL(immediate) break; case X86Local::MRMSrcReg: // Operand 1 is a register operand in the Reg/Opcode field. // Operand 2 is a register operand in the R/M field. // - In AVX, there is a register operand in the VEX.vvvv field here - // Operand 3 (optional) is an immediate. // Operand 4 (optional) is an immediate. if (HasVEX_4V || HasVEX_4VOp3) assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 5 && "Unexpected number of operands for MRMSrcRegFrm with VEX_4V"); else assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 4 && "Unexpected number of operands for MRMSrcRegFrm"); HANDLE_OPERAND(roRegister) if (HasEVEX_K) HANDLE_OPERAND(writemaskRegister) if (HasVEX_4V) // FIXME: In AVX, the register below becomes the one encoded // in ModRMVEX and the one above the one in the VEX.VVVV field HANDLE_OPERAND(vvvvRegister) if (HasMemOp4Prefix) HANDLE_OPERAND(immediate) HANDLE_OPERAND(rmRegister) if (HasVEX_4VOp3) HANDLE_OPERAND(vvvvRegister) if (!HasMemOp4Prefix) HANDLE_OPTIONAL(immediate) HANDLE_OPTIONAL(immediate) // above might be a register in 7:4 HANDLE_OPTIONAL(immediate) break; case X86Local::MRMSrcMem: // Operand 1 is a register operand in the Reg/Opcode field. // Operand 2 is a memory operand (possibly SIB-extended) // - In AVX, there is a register operand in the VEX.vvvv field here - // Operand 3 (optional) is an immediate. if (HasVEX_4V || HasVEX_4VOp3) assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 5 && "Unexpected number of operands for MRMSrcMemFrm with VEX_4V"); else assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 && "Unexpected number of operands for MRMSrcMemFrm"); HANDLE_OPERAND(roRegister) if (HasEVEX_K) HANDLE_OPERAND(writemaskRegister) if (HasVEX_4V) // FIXME: In AVX, the register below becomes the one encoded // in ModRMVEX and the one above the one in the VEX.VVVV field HANDLE_OPERAND(vvvvRegister) if (HasMemOp4Prefix) HANDLE_OPERAND(immediate) HANDLE_OPERAND(memory) if (HasVEX_4VOp3) HANDLE_OPERAND(vvvvRegister) if (!HasMemOp4Prefix) HANDLE_OPTIONAL(immediate) HANDLE_OPTIONAL(immediate) // above might be a register in 7:4 break; case X86Local::MRMXr: case X86Local::MRM0r: case X86Local::MRM1r: case X86Local::MRM2r: case X86Local::MRM3r: case X86Local::MRM4r: case X86Local::MRM5r: case X86Local::MRM6r: case X86Local::MRM7r: { // Operand 1 is a register operand in the R/M field. // Operand 2 (optional) is an immediate or relocation. // Operand 3 (optional) is an immediate. unsigned kOp = (HasEVEX_K) ? 1:0; unsigned Op4v = (HasVEX_4V) ? 1:0; if (numPhysicalOperands > 3 + kOp + Op4v) llvm_unreachable("Unexpected number of operands for MRMnr"); } if (HasVEX_4V) HANDLE_OPERAND(vvvvRegister) if (HasEVEX_K) HANDLE_OPERAND(writemaskRegister) HANDLE_OPTIONAL(rmRegister) HANDLE_OPTIONAL(relocation) HANDLE_OPTIONAL(immediate) break; case X86Local::MRMXm: case X86Local::MRM0m: case X86Local::MRM1m: case X86Local::MRM2m: case X86Local::MRM3m: case X86Local::MRM4m: case X86Local::MRM5m: case X86Local::MRM6m: case X86Local::MRM7m: { // Operand 1 is a memory operand (possibly SIB-extended) // Operand 2 (optional) is an immediate or relocation. unsigned kOp = (HasEVEX_K) ? 1:0; unsigned Op4v = (HasVEX_4V) ? 1:0; if (numPhysicalOperands < 1 + kOp + Op4v || numPhysicalOperands > 2 + kOp + Op4v) llvm_unreachable("Unexpected number of operands for MRMnm"); } if (HasVEX_4V) HANDLE_OPERAND(vvvvRegister) if (HasEVEX_K) HANDLE_OPERAND(writemaskRegister) HANDLE_OPERAND(memory) HANDLE_OPTIONAL(relocation) break; case X86Local::RawFrmImm8: // operand 1 is a 16-bit immediate // operand 2 is an 8-bit immediate assert(numPhysicalOperands == 2 && "Unexpected number of operands for X86Local::RawFrmImm8"); HANDLE_OPERAND(immediate) HANDLE_OPERAND(immediate) break; case X86Local::RawFrmImm16: // operand 1 is a 16-bit immediate // operand 2 is a 16-bit immediate HANDLE_OPERAND(immediate) HANDLE_OPERAND(immediate) break; case X86Local::MRM_F8: if (Opcode == 0xc6) { assert(numPhysicalOperands == 1 && "Unexpected number of operands for X86Local::MRM_F8"); HANDLE_OPERAND(immediate) } else if (Opcode == 0xc7) { assert(numPhysicalOperands == 1 && "Unexpected number of operands for X86Local::MRM_F8"); HANDLE_OPERAND(relocation) } break; case X86Local::MRM_C0: case X86Local::MRM_C1: case X86Local::MRM_C2: case X86Local::MRM_C3: case X86Local::MRM_C4: case X86Local::MRM_C8: case X86Local::MRM_C9: case X86Local::MRM_CA: case X86Local::MRM_CB: case X86Local::MRM_D0: case X86Local::MRM_D1: case X86Local::MRM_D4: case X86Local::MRM_D5: case X86Local::MRM_D6: case X86Local::MRM_D8: case X86Local::MRM_D9: case X86Local::MRM_DA: case X86Local::MRM_DB: case X86Local::MRM_DC: case X86Local::MRM_DD: case X86Local::MRM_DE: case X86Local::MRM_DF: case X86Local::MRM_E0: case X86Local::MRM_E1: case X86Local::MRM_E2: case X86Local::MRM_E3: case X86Local::MRM_E4: case X86Local::MRM_E5: case X86Local::MRM_E8: case X86Local::MRM_E9: case X86Local::MRM_EA: case X86Local::MRM_EB: case X86Local::MRM_EC: case X86Local::MRM_ED: case X86Local::MRM_EE: case X86Local::MRM_F0: case X86Local::MRM_F1: case X86Local::MRM_F2: case X86Local::MRM_F3: case X86Local::MRM_F4: case X86Local::MRM_F5: case X86Local::MRM_F6: case X86Local::MRM_F7: case X86Local::MRM_F9: case X86Local::MRM_FA: case X86Local::MRM_FB: case X86Local::MRM_FC: case X86Local::MRM_FD: case X86Local::MRM_FE: case X86Local::MRM_FF: // Ignored. break; } #undef HANDLE_OPERAND #undef HANDLE_OPTIONAL } void RecognizableInstr::emitDecodePath(DisassemblerTables &tables) const { // Special cases where the LLVM tables are not complete #define MAP(from, to) \ case X86Local::MRM_##from: \ filter = new ExactFilter(0x##from); \ break; OpcodeType opcodeType = (OpcodeType)-1; ModRMFilter* filter = nullptr; uint8_t opcodeToSet = 0; switch (OpMap) { default: llvm_unreachable("Invalid map!"); case X86Local::OB: case X86Local::TB: case X86Local::T8: case X86Local::TA: case X86Local::XOP8: case X86Local::XOP9: case X86Local::XOPA: switch (OpMap) { default: llvm_unreachable("Unexpected map!"); case X86Local::OB: opcodeType = ONEBYTE; break; case X86Local::TB: opcodeType = TWOBYTE; break; case X86Local::T8: opcodeType = THREEBYTE_38; break; case X86Local::TA: opcodeType = THREEBYTE_3A; break; case X86Local::XOP8: opcodeType = XOP8_MAP; break; case X86Local::XOP9: opcodeType = XOP9_MAP; break; case X86Local::XOPA: opcodeType = XOPA_MAP; break; } switch (Form) { default: filter = new DumbFilter(); break; case X86Local::MRMDestReg: case X86Local::MRMDestMem: case X86Local::MRMSrcReg: case X86Local::MRMSrcMem: case X86Local::MRMXr: case X86Local::MRMXm: filter = new ModFilter(isRegFormat(Form)); break; case X86Local::MRM0r: case X86Local::MRM1r: case X86Local::MRM2r: case X86Local::MRM3r: case X86Local::MRM4r: case X86Local::MRM5r: case X86Local::MRM6r: case X86Local::MRM7r: filter = new ExtendedFilter(true, Form - X86Local::MRM0r); break; case X86Local::MRM0m: case X86Local::MRM1m: case X86Local::MRM2m: case X86Local::MRM3m: case X86Local::MRM4m: case X86Local::MRM5m: case X86Local::MRM6m: case X86Local::MRM7m: filter = new ExtendedFilter(false, Form - X86Local::MRM0m); break; MRM_MAPPING } // switch (Form) opcodeToSet = Opcode; break; } // switch (OpMap) assert(opcodeType != (OpcodeType)-1 && "Opcode type not set"); assert(filter && "Filter not set"); if (Form == X86Local::AddRegFrm) { assert(((opcodeToSet & 7) == 0) && "ADDREG_FRM opcode not aligned"); uint8_t currentOpcode; for (currentOpcode = opcodeToSet; currentOpcode < opcodeToSet + 8; ++currentOpcode) tables.setTableFields(opcodeType, insnContext(), currentOpcode, *filter, UID, Is32Bit, IgnoresVEX_L); } else { tables.setTableFields(opcodeType, insnContext(), opcodeToSet, *filter, UID, Is32Bit, IgnoresVEX_L); } delete filter; #undef MAP } #define TYPE(str, type) if (s == str) return type; OperandType RecognizableInstr::typeFromString(const std::string &s, bool hasREX_WPrefix, uint8_t OpSize) { if(hasREX_WPrefix) { // For instructions with a REX_W prefix, a declared 32-bit register encoding // is special. TYPE("GR32", TYPE_R32) } if(OpSize == X86Local::OpSize16) { // For OpSize16 instructions, a declared 16-bit register or // immediate encoding is special. TYPE("GR16", TYPE_Rv) TYPE("i16imm", TYPE_IMMv) } else if(OpSize == X86Local::OpSize32) { // For OpSize32 instructions, a declared 32-bit register or // immediate encoding is special. TYPE("GR32", TYPE_Rv) } TYPE("i16mem", TYPE_Mv) TYPE("i16imm", TYPE_IMM16) TYPE("i16i8imm", TYPE_IMMv) TYPE("GR16", TYPE_R16) TYPE("i32mem", TYPE_Mv) TYPE("i32imm", TYPE_IMMv) TYPE("i32i8imm", TYPE_IMM32) TYPE("u32u8imm", TYPE_IMM32) TYPE("GR32", TYPE_R32) TYPE("GR32orGR64", TYPE_R32) TYPE("i64mem", TYPE_Mv) TYPE("i64i32imm", TYPE_IMM64) TYPE("i64i8imm", TYPE_IMM64) TYPE("GR64", TYPE_R64) TYPE("i8mem", TYPE_M8) TYPE("i8imm", TYPE_IMM8) TYPE("GR8", TYPE_R8) TYPE("VR128", TYPE_XMM128) TYPE("VR128X", TYPE_XMM128) TYPE("f128mem", TYPE_M128) TYPE("f256mem", TYPE_M256) TYPE("f512mem", TYPE_M512) TYPE("FR64", TYPE_XMM64) TYPE("FR64X", TYPE_XMM64) TYPE("f64mem", TYPE_M64FP) TYPE("sdmem", TYPE_M64FP) TYPE("FR32", TYPE_XMM32) TYPE("FR32X", TYPE_XMM32) TYPE("f32mem", TYPE_M32FP) TYPE("ssmem", TYPE_M32FP) TYPE("RST", TYPE_ST) TYPE("i128mem", TYPE_M128) TYPE("i256mem", TYPE_M256) TYPE("i512mem", TYPE_M512) TYPE("i64i32imm_pcrel", TYPE_REL64) TYPE("i16imm_pcrel", TYPE_REL16) TYPE("i32imm_pcrel", TYPE_REL32) TYPE("SSECC", TYPE_IMM3) TYPE("AVXCC", TYPE_IMM5) TYPE("AVX512RC", TYPE_IMM32) TYPE("brtarget", TYPE_RELv) TYPE("uncondbrtarget", TYPE_RELv) TYPE("brtarget8", TYPE_REL8) TYPE("f80mem", TYPE_M80FP) TYPE("lea32mem", TYPE_LEA) TYPE("lea64_32mem", TYPE_LEA) TYPE("lea64mem", TYPE_LEA) TYPE("VR64", TYPE_MM64) TYPE("i64imm", TYPE_IMMv) TYPE("opaque32mem", TYPE_M1616) TYPE("opaque48mem", TYPE_M1632) TYPE("opaque80mem", TYPE_M1664) TYPE("opaque512mem", TYPE_M512) TYPE("SEGMENT_REG", TYPE_SEGMENTREG) TYPE("DEBUG_REG", TYPE_DEBUGREG) TYPE("CONTROL_REG", TYPE_CONTROLREG) TYPE("srcidx8", TYPE_SRCIDX8) TYPE("srcidx16", TYPE_SRCIDX16) TYPE("srcidx32", TYPE_SRCIDX32) TYPE("srcidx64", TYPE_SRCIDX64) TYPE("dstidx8", TYPE_DSTIDX8) TYPE("dstidx16", TYPE_DSTIDX16) TYPE("dstidx32", TYPE_DSTIDX32) TYPE("dstidx64", TYPE_DSTIDX64) TYPE("offset8", TYPE_MOFFS8) TYPE("offset16", TYPE_MOFFS16) TYPE("offset32", TYPE_MOFFS32) TYPE("offset64", TYPE_MOFFS64) TYPE("VR256", TYPE_XMM256) TYPE("VR256X", TYPE_XMM256) TYPE("VR512", TYPE_XMM512) TYPE("VK1", TYPE_VK1) TYPE("VK1WM", TYPE_VK1) TYPE("VK2", TYPE_VK2) TYPE("VK2WM", TYPE_VK2) TYPE("VK4", TYPE_VK4) TYPE("VK4WM", TYPE_VK4) TYPE("VK8", TYPE_VK8) TYPE("VK8WM", TYPE_VK8) TYPE("VK16", TYPE_VK16) TYPE("VK16WM", TYPE_VK16) TYPE("VK32", TYPE_VK32) TYPE("VK32WM", TYPE_VK32) TYPE("VK64", TYPE_VK64) TYPE("VK64WM", TYPE_VK64) TYPE("GR16_NOAX", TYPE_Rv) TYPE("GR32_NOAX", TYPE_Rv) TYPE("GR64_NOAX", TYPE_R64) TYPE("vx32mem", TYPE_M32) TYPE("vy32mem", TYPE_M32) TYPE("vz32mem", TYPE_M32) TYPE("vx64mem", TYPE_M64) TYPE("vy64mem", TYPE_M64) TYPE("vy64xmem", TYPE_M64) TYPE("vz64mem", TYPE_M64) errs() << "Unhandled type string " << s << "\n"; llvm_unreachable("Unhandled type string"); } #undef TYPE #define ENCODING(str, encoding) if (s == str) return encoding; OperandEncoding RecognizableInstr::immediateEncodingFromString(const std::string &s, uint8_t OpSize) { if(OpSize != X86Local::OpSize16) { // For instructions without an OpSize prefix, a declared 16-bit register or // immediate encoding is special. ENCODING("i16imm", ENCODING_IW) } ENCODING("i32i8imm", ENCODING_IB) ENCODING("u32u8imm", ENCODING_IB) ENCODING("SSECC", ENCODING_IB) ENCODING("AVXCC", ENCODING_IB) ENCODING("AVX512RC", ENCODING_IB) ENCODING("i16imm", ENCODING_Iv) ENCODING("i16i8imm", ENCODING_IB) ENCODING("i32imm", ENCODING_Iv) ENCODING("i64i32imm", ENCODING_ID) ENCODING("i64i8imm", ENCODING_IB) ENCODING("i8imm", ENCODING_IB) // This is not a typo. Instructions like BLENDVPD put // register IDs in 8-bit immediates nowadays. ENCODING("FR32", ENCODING_IB) ENCODING("FR64", ENCODING_IB) ENCODING("VR128", ENCODING_IB) ENCODING("VR256", ENCODING_IB) ENCODING("FR32X", ENCODING_IB) ENCODING("FR64X", ENCODING_IB) ENCODING("VR128X", ENCODING_IB) ENCODING("VR256X", ENCODING_IB) ENCODING("VR512", ENCODING_IB) errs() << "Unhandled immediate encoding " << s << "\n"; llvm_unreachable("Unhandled immediate encoding"); } OperandEncoding RecognizableInstr::rmRegisterEncodingFromString(const std::string &s, uint8_t OpSize) { ENCODING("RST", ENCODING_FP) ENCODING("GR16", ENCODING_RM) ENCODING("GR32", ENCODING_RM) ENCODING("GR32orGR64", ENCODING_RM) ENCODING("GR64", ENCODING_RM) ENCODING("GR8", ENCODING_RM) ENCODING("VR128", ENCODING_RM) ENCODING("VR128X", ENCODING_RM) ENCODING("FR64", ENCODING_RM) ENCODING("FR32", ENCODING_RM) ENCODING("FR64X", ENCODING_RM) ENCODING("FR32X", ENCODING_RM) ENCODING("VR64", ENCODING_RM) ENCODING("VR256", ENCODING_RM) ENCODING("VR256X", ENCODING_RM) ENCODING("VR512", ENCODING_RM) ENCODING("VK1", ENCODING_RM) ENCODING("VK8", ENCODING_RM) ENCODING("VK16", ENCODING_RM) errs() << "Unhandled R/M register encoding " << s << "\n"; llvm_unreachable("Unhandled R/M register encoding"); } OperandEncoding RecognizableInstr::roRegisterEncodingFromString(const std::string &s, uint8_t OpSize) { ENCODING("GR16", ENCODING_REG) ENCODING("GR32", ENCODING_REG) ENCODING("GR32orGR64", ENCODING_REG) ENCODING("GR64", ENCODING_REG) ENCODING("GR8", ENCODING_REG) ENCODING("VR128", ENCODING_REG) ENCODING("FR64", ENCODING_REG) ENCODING("FR32", ENCODING_REG) ENCODING("VR64", ENCODING_REG) ENCODING("SEGMENT_REG", ENCODING_REG) ENCODING("DEBUG_REG", ENCODING_REG) ENCODING("CONTROL_REG", ENCODING_REG) ENCODING("VR256", ENCODING_REG) ENCODING("VR256X", ENCODING_REG) ENCODING("VR128X", ENCODING_REG) ENCODING("FR64X", ENCODING_REG) ENCODING("FR32X", ENCODING_REG) ENCODING("VR512", ENCODING_REG) ENCODING("VK1", ENCODING_REG) ENCODING("VK8", ENCODING_REG) ENCODING("VK16", ENCODING_REG) ENCODING("VK1WM", ENCODING_REG) ENCODING("VK8WM", ENCODING_REG) ENCODING("VK16WM", ENCODING_REG) errs() << "Unhandled reg/opcode register encoding " << s << "\n"; llvm_unreachable("Unhandled reg/opcode register encoding"); } OperandEncoding RecognizableInstr::vvvvRegisterEncodingFromString(const std::string &s, uint8_t OpSize) { ENCODING("GR32", ENCODING_VVVV) ENCODING("GR64", ENCODING_VVVV) ENCODING("FR32", ENCODING_VVVV) ENCODING("FR64", ENCODING_VVVV) ENCODING("VR128", ENCODING_VVVV) ENCODING("VR256", ENCODING_VVVV) ENCODING("FR32X", ENCODING_VVVV) ENCODING("FR64X", ENCODING_VVVV) ENCODING("VR128X", ENCODING_VVVV) ENCODING("VR256X", ENCODING_VVVV) ENCODING("VR512", ENCODING_VVVV) ENCODING("VK1", ENCODING_VVVV) ENCODING("VK2", ENCODING_VVVV) ENCODING("VK4", ENCODING_VVVV) ENCODING("VK8", ENCODING_VVVV) ENCODING("VK16", ENCODING_VVVV) errs() << "Unhandled VEX.vvvv register encoding " << s << "\n"; llvm_unreachable("Unhandled VEX.vvvv register encoding"); } OperandEncoding RecognizableInstr::writemaskRegisterEncodingFromString(const std::string &s, uint8_t OpSize) { ENCODING("VK1WM", ENCODING_WRITEMASK) ENCODING("VK2WM", ENCODING_WRITEMASK) ENCODING("VK4WM", ENCODING_WRITEMASK) ENCODING("VK8WM", ENCODING_WRITEMASK) ENCODING("VK16WM", ENCODING_WRITEMASK) ENCODING("VK32WM", ENCODING_WRITEMASK) ENCODING("VK64WM", ENCODING_WRITEMASK) errs() << "Unhandled mask register encoding " << s << "\n"; llvm_unreachable("Unhandled mask register encoding"); } OperandEncoding RecognizableInstr::memoryEncodingFromString(const std::string &s, uint8_t OpSize) { ENCODING("i16mem", ENCODING_RM) ENCODING("i32mem", ENCODING_RM) ENCODING("i64mem", ENCODING_RM) ENCODING("i8mem", ENCODING_RM) ENCODING("ssmem", ENCODING_RM) ENCODING("sdmem", ENCODING_RM) ENCODING("f128mem", ENCODING_RM) ENCODING("f256mem", ENCODING_RM) ENCODING("f512mem", ENCODING_RM) ENCODING("f64mem", ENCODING_RM) ENCODING("f32mem", ENCODING_RM) ENCODING("i128mem", ENCODING_RM) ENCODING("i256mem", ENCODING_RM) ENCODING("i512mem", ENCODING_RM) ENCODING("f80mem", ENCODING_RM) ENCODING("lea32mem", ENCODING_RM) ENCODING("lea64_32mem", ENCODING_RM) ENCODING("lea64mem", ENCODING_RM) ENCODING("opaque32mem", ENCODING_RM) ENCODING("opaque48mem", ENCODING_RM) ENCODING("opaque80mem", ENCODING_RM) ENCODING("opaque512mem", ENCODING_RM) ENCODING("vx32mem", ENCODING_RM) ENCODING("vy32mem", ENCODING_RM) ENCODING("vz32mem", ENCODING_RM) ENCODING("vx64mem", ENCODING_RM) ENCODING("vy64mem", ENCODING_RM) ENCODING("vy64xmem", ENCODING_RM) ENCODING("vz64mem", ENCODING_RM) errs() << "Unhandled memory encoding " << s << "\n"; llvm_unreachable("Unhandled memory encoding"); } OperandEncoding RecognizableInstr::relocationEncodingFromString(const std::string &s, uint8_t OpSize) { if(OpSize != X86Local::OpSize16) { // For instructions without an OpSize prefix, a declared 16-bit register or // immediate encoding is special. ENCODING("i16imm", ENCODING_IW) } ENCODING("i16imm", ENCODING_Iv) ENCODING("i16i8imm", ENCODING_IB) ENCODING("i32imm", ENCODING_Iv) ENCODING("i32i8imm", ENCODING_IB) ENCODING("i64i32imm", ENCODING_ID) ENCODING("i64i8imm", ENCODING_IB) ENCODING("i8imm", ENCODING_IB) ENCODING("i64i32imm_pcrel", ENCODING_ID) ENCODING("i16imm_pcrel", ENCODING_IW) ENCODING("i32imm_pcrel", ENCODING_ID) ENCODING("brtarget", ENCODING_Iv) ENCODING("brtarget8", ENCODING_IB) ENCODING("i64imm", ENCODING_IO) ENCODING("offset8", ENCODING_Ia) ENCODING("offset16", ENCODING_Ia) ENCODING("offset32", ENCODING_Ia) ENCODING("offset64", ENCODING_Ia) ENCODING("srcidx8", ENCODING_SI) ENCODING("srcidx16", ENCODING_SI) ENCODING("srcidx32", ENCODING_SI) ENCODING("srcidx64", ENCODING_SI) ENCODING("dstidx8", ENCODING_DI) ENCODING("dstidx16", ENCODING_DI) ENCODING("dstidx32", ENCODING_DI) ENCODING("dstidx64", ENCODING_DI) errs() << "Unhandled relocation encoding " << s << "\n"; llvm_unreachable("Unhandled relocation encoding"); } OperandEncoding RecognizableInstr::opcodeModifierEncodingFromString(const std::string &s, uint8_t OpSize) { ENCODING("GR32", ENCODING_Rv) ENCODING("GR64", ENCODING_RO) ENCODING("GR16", ENCODING_Rv) ENCODING("GR8", ENCODING_RB) ENCODING("GR16_NOAX", ENCODING_Rv) ENCODING("GR32_NOAX", ENCODING_Rv) ENCODING("GR64_NOAX", ENCODING_RO) errs() << "Unhandled opcode modifier encoding " << s << "\n"; llvm_unreachable("Unhandled opcode modifier encoding"); } #undef ENCODING