//===-- llvm/CodeGen/ISDOpcodes.h - CodeGen opcodes -------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file declares codegen opcodes and related utilities. // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_ISDOPCODES_H #define LLVM_CODEGEN_ISDOPCODES_H namespace llvm { /// ISD namespace - This namespace contains an enum which represents all of the /// SelectionDAG node types and value types. /// namespace ISD { //===--------------------------------------------------------------------===// /// ISD::NodeType enum - This enum defines the target-independent operators /// for a SelectionDAG. /// /// Targets may also define target-dependent operator codes for SDNodes. For /// example, on x86, these are the enum values in the X86ISD namespace. /// Targets should aim to use target-independent operators to model their /// instruction sets as much as possible, and only use target-dependent /// operators when they have special requirements. /// /// Finally, during and after selection proper, SNodes may use special /// operator codes that correspond directly with MachineInstr opcodes. These /// are used to represent selected instructions. See the isMachineOpcode() /// and getMachineOpcode() member functions of SDNode. /// enum NodeType { // DELETED_NODE - This is an illegal value that is used to catch // errors. This opcode is not a legal opcode for any node. DELETED_NODE, // EntryToken - This is the marker used to indicate the start of the region. EntryToken, // TokenFactor - This node takes multiple tokens as input and produces a // single token result. This is used to represent the fact that the operand // operators are independent of each other. TokenFactor, // AssertSext, AssertZext - These nodes record if a register contains a // value that has already been zero or sign extended from a narrower type. // These nodes take two operands. The first is the node that has already // been extended, and the second is a value type node indicating the width // of the extension AssertSext, AssertZext, // Various leaf nodes. BasicBlock, VALUETYPE, CONDCODE, Register, Constant, ConstantFP, GlobalAddress, GlobalTLSAddress, FrameIndex, JumpTable, ConstantPool, ExternalSymbol, BlockAddress, // The address of the GOT GLOBAL_OFFSET_TABLE, // FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and // llvm.returnaddress on the DAG. These nodes take one operand, the index // of the frame or return address to return. An index of zero corresponds // to the current function's frame or return address, an index of one to the // parent's frame or return address, and so on. FRAMEADDR, RETURNADDR, // FRAME_TO_ARGS_OFFSET - This node represents offset from frame pointer to // first (possible) on-stack argument. This is needed for correct stack // adjustment during unwind. FRAME_TO_ARGS_OFFSET, // RESULT, OUTCHAIN = EXCEPTIONADDR(INCHAIN) - This node represents the // address of the exception block on entry to an landing pad block. EXCEPTIONADDR, // RESULT, OUTCHAIN = LSDAADDR(INCHAIN) - This node represents the // address of the Language Specific Data Area for the enclosing function. LSDAADDR, // RESULT, OUTCHAIN = EHSELECTION(INCHAIN, EXCEPTION) - This node represents // the selection index of the exception thrown. EHSELECTION, // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents // 'eh_return' gcc dwarf builtin, which is used to return from // exception. The general meaning is: adjust stack by OFFSET and pass // execution to HANDLER. Many platform-related details also :) EH_RETURN, // OUTCHAIN = EH_SJLJ_SETJMP(INCHAIN, buffer) // This corresponds to the eh.sjlj.setjmp intrinsic. // It takes an input chain and a pointer to the jump buffer as inputs // and returns an outchain. EH_SJLJ_SETJMP, // OUTCHAIN = EH_SJLJ_LONGJMP(INCHAIN, buffer) // This corresponds to the eh.sjlj.longjmp intrinsic. // It takes an input chain and a pointer to the jump buffer as inputs // and returns an outchain. EH_SJLJ_LONGJMP, // OUTCHAIN = EH_SJLJ_DISPATCHSETUP(INCHAIN, context) // This corresponds to the eh.sjlj.dispatchsetup intrinsic. It takes an // input chain and a pointer to the sjlj function context as inputs and // returns an outchain. By default, this does nothing. Targets can lower // this to unwind setup code if needed. EH_SJLJ_DISPATCHSETUP, // TargetConstant* - Like Constant*, but the DAG does not do any folding, // simplification, or lowering of the constant. They are used for constants // which are known to fit in the immediate fields of their users, or for // carrying magic numbers which are not values which need to be materialized // in registers. TargetConstant, TargetConstantFP, // TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or // anything else with this node, and this is valid in the target-specific // dag, turning into a GlobalAddress operand. TargetGlobalAddress, TargetGlobalTLSAddress, TargetFrameIndex, TargetJumpTable, TargetConstantPool, TargetExternalSymbol, TargetBlockAddress, /// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) /// This node represents a target intrinsic function with no side effects. /// The first operand is the ID number of the intrinsic from the /// llvm::Intrinsic namespace. The operands to the intrinsic follow. The /// node returns the result of the intrinsic. INTRINSIC_WO_CHAIN, /// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) /// This node represents a target intrinsic function with side effects that /// returns a result. The first operand is a chain pointer. The second is /// the ID number of the intrinsic from the llvm::Intrinsic namespace. The /// operands to the intrinsic follow. The node has two results, the result /// of the intrinsic and an output chain. INTRINSIC_W_CHAIN, /// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) /// This node represents a target intrinsic function with side effects that /// does not return a result. The first operand is a chain pointer. The /// second is the ID number of the intrinsic from the llvm::Intrinsic /// namespace. The operands to the intrinsic follow. INTRINSIC_VOID, // CopyToReg - This node has three operands: a chain, a register number to // set to this value, and a value. CopyToReg, // CopyFromReg - This node indicates that the input value is a virtual or // physical register that is defined outside of the scope of this // SelectionDAG. The register is available from the RegisterSDNode object. CopyFromReg, // UNDEF - An undefined node UNDEF, // EXTRACT_ELEMENT - This is used to get the lower or upper (determined by // a Constant, which is required to be operand #1) half of the integer or // float value specified as operand #0. This is only for use before // legalization, for values that will be broken into multiple registers. EXTRACT_ELEMENT, // BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways. Given // two values of the same integer value type, this produces a value twice as // big. Like EXTRACT_ELEMENT, this can only be used before legalization. BUILD_PAIR, // MERGE_VALUES - This node takes multiple discrete operands and returns // them all as its individual results. This nodes has exactly the same // number of inputs and outputs. This node is useful for some pieces of the // code generator that want to think about a single node with multiple // results, not multiple nodes. MERGE_VALUES, // Simple integer binary arithmetic operators. ADD, SUB, MUL, SDIV, UDIV, SREM, UREM, // SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing // a signed/unsigned value of type i[2*N], and return the full value as // two results, each of type iN. SMUL_LOHI, UMUL_LOHI, // SDIVREM/UDIVREM - Divide two integers and produce both a quotient and // remainder result. SDIVREM, UDIVREM, // CARRY_FALSE - This node is used when folding other nodes, // like ADDC/SUBC, which indicate the carry result is always false. CARRY_FALSE, // Carry-setting nodes for multiple precision addition and subtraction. // These nodes take two operands of the same value type, and produce two // results. The first result is the normal add or sub result, the second // result is the carry flag result. ADDC, SUBC, // Carry-using nodes for multiple precision addition and subtraction. These // nodes take three operands: The first two are the normal lhs and rhs to // the add or sub, and the third is the input carry flag. These nodes // produce two results; the normal result of the add or sub, and the output // carry flag. These nodes both read and write a carry flag to allow them // to them to be chained together for add and sub of arbitrarily large // values. ADDE, SUBE, // RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition. // These nodes take two operands: the normal LHS and RHS to the add. They // produce two results: the normal result of the add, and a boolean that // indicates if an overflow occured (*not* a flag, because it may be stored // to memory, etc.). If the type of the boolean is not i1 then the high // bits conform to getBooleanContents. // These nodes are generated from the llvm.[su]add.with.overflow intrinsics. SADDO, UADDO, // Same for subtraction SSUBO, USUBO, // Same for multiplication SMULO, UMULO, // Simple binary floating point operators. FADD, FSUB, FMUL, FDIV, FREM, // FCOPYSIGN(X, Y) - Return the value of X with the sign of Y. NOTE: This // DAG node does not require that X and Y have the same type, just that they // are both floating point. X and the result must have the same type. // FCOPYSIGN(f32, f64) is allowed. FCOPYSIGN, // INT = FGETSIGN(FP) - Return the sign bit of the specified floating point // value as an integer 0/1 value. FGETSIGN, /// BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a vector with the /// specified, possibly variable, elements. The number of elements is /// required to be a power of two. The types of the operands must all be /// the same and must match the vector element type, except that integer /// types are allowed to be larger than the element type, in which case /// the operands are implicitly truncated. BUILD_VECTOR, /// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element /// at IDX replaced with VAL. If the type of VAL is larger than the vector /// element type then VAL is truncated before replacement. INSERT_VECTOR_ELT, /// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR /// identified by the (potentially variable) element number IDX. If the /// return type is an integer type larger than the element type of the /// vector, the result is extended to the width of the return type. EXTRACT_VECTOR_ELT, /// CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of /// vector type with the same length and element type, this produces a /// concatenated vector result value, with length equal to the sum of the /// lengths of the input vectors. CONCAT_VECTORS, /// EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR (an /// vector value) starting with the (potentially variable) element number /// IDX, which must be a multiple of the result vector length. EXTRACT_SUBVECTOR, /// VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as /// VEC1/VEC2. A VECTOR_SHUFFLE node also contains an array of constant int /// values that indicate which value (or undef) each result element will /// get. These constant ints are accessible through the /// ShuffleVectorSDNode class. This is quite similar to the Altivec /// 'vperm' instruction, except that the indices must be constants and are /// in terms of the element size of VEC1/VEC2, not in terms of bytes. VECTOR_SHUFFLE, /// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a /// scalar value into element 0 of the resultant vector type. The top /// elements 1 to N-1 of the N-element vector are undefined. The type /// of the operand must match the vector element type, except when they /// are integer types. In this case the operand is allowed to be wider /// than the vector element type, and is implicitly truncated to it. SCALAR_TO_VECTOR, // MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing // an unsigned/signed value of type i[2*N], then return the top part. MULHU, MULHS, // Bitwise operators - logical and, logical or, logical xor, shift left, // shift right algebraic (shift in sign bits), shift right logical (shift in // zeroes), rotate left, rotate right, and byteswap. AND, OR, XOR, SHL, SRA, SRL, ROTL, ROTR, BSWAP, // Counting operators CTTZ, CTLZ, CTPOP, // Select(COND, TRUEVAL, FALSEVAL). If the type of the boolean COND is not // i1 then the high bits must conform to getBooleanContents. SELECT, // Select with condition operator - This selects between a true value and // a false value (ops #2 and #3) based on the boolean result of comparing // the lhs and rhs (ops #0 and #1) of a conditional expression with the // condition code in op #4, a CondCodeSDNode. SELECT_CC, // SetCC operator - This evaluates to a true value iff the condition is // true. If the result value type is not i1 then the high bits conform // to getBooleanContents. The operands to this are the left and right // operands to compare (ops #0, and #1) and the condition code to compare // them with (op #2) as a CondCodeSDNode. SETCC, // RESULT = VSETCC(LHS, RHS, COND) operator - This evaluates to a vector of // integer elements with all bits of the result elements set to true if the // comparison is true or all cleared if the comparison is false. The // operands to this are the left and right operands to compare (LHS/RHS) and // the condition code to compare them with (COND) as a CondCodeSDNode. VSETCC, // SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded // integer shift operations, just like ADD/SUB_PARTS. The operation // ordering is: // [Lo,Hi] = op [LoLHS,HiLHS], Amt SHL_PARTS, SRA_PARTS, SRL_PARTS, // Conversion operators. These are all single input single output // operations. For all of these, the result type must be strictly // wider or narrower (depending on the operation) than the source // type. // SIGN_EXTEND - Used for integer types, replicating the sign bit // into new bits. SIGN_EXTEND, // ZERO_EXTEND - Used for integer types, zeroing the new bits. ZERO_EXTEND, // ANY_EXTEND - Used for integer types. The high bits are undefined. ANY_EXTEND, // TRUNCATE - Completely drop the high bits. TRUNCATE, // [SU]INT_TO_FP - These operators convert integers (whose interpreted sign // depends on the first letter) to floating point. SINT_TO_FP, UINT_TO_FP, // SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to // sign extend a small value in a large integer register (e.g. sign // extending the low 8 bits of a 32-bit register to fill the top 24 bits // with the 7th bit). The size of the smaller type is indicated by the 1th // operand, a ValueType node. SIGN_EXTEND_INREG, /// FP_TO_[US]INT - Convert a floating point value to a signed or unsigned /// integer. FP_TO_SINT, FP_TO_UINT, /// X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type /// down to the precision of the destination VT. TRUNC is a flag, which is /// always an integer that is zero or one. If TRUNC is 0, this is a /// normal rounding, if it is 1, this FP_ROUND is known to not change the /// value of Y. /// /// The TRUNC = 1 case is used in cases where we know that the value will /// not be modified by the node, because Y is not using any of the extra /// precision of source type. This allows certain transformations like /// FP_EXTEND(FP_ROUND(X,1)) -> X which are not safe for /// FP_EXTEND(FP_ROUND(X,0)) because the extra bits aren't removed. FP_ROUND, // FLT_ROUNDS_ - Returns current rounding mode: // -1 Undefined // 0 Round to 0 // 1 Round to nearest // 2 Round to +inf // 3 Round to -inf FLT_ROUNDS_, /// X = FP_ROUND_INREG(Y, VT) - This operator takes an FP register, and /// rounds it to a floating point value. It then promotes it and returns it /// in a register of the same size. This operation effectively just /// discards excess precision. The type to round down to is specified by /// the VT operand, a VTSDNode. FP_ROUND_INREG, /// X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type. FP_EXTEND, // BITCAST - This operator converts between integer, vector and FP // values, as if the value was stored to memory with one type and loaded // from the same address with the other type (or equivalently for vector // format conversions, etc). The source and result are required to have // the same bit size (e.g. f32 <-> i32). This can also be used for // int-to-int or fp-to-fp conversions, but that is a noop, deleted by // getNode(). BITCAST, // CONVERT_RNDSAT - This operator is used to support various conversions // between various types (float, signed, unsigned and vectors of those // types) with rounding and saturation. NOTE: Avoid using this operator as // most target don't support it and the operator might be removed in the // future. It takes the following arguments: // 0) value // 1) dest type (type to convert to) // 2) src type (type to convert from) // 3) rounding imm // 4) saturation imm // 5) ISD::CvtCode indicating the type of conversion to do CONVERT_RNDSAT, // FP16_TO_FP32, FP32_TO_FP16 - These operators are used to perform // promotions and truncation for half-precision (16 bit) floating // numbers. We need special nodes since FP16 is a storage-only type with // special semantics of operations. FP16_TO_FP32, FP32_TO_FP16, // FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW, // FLOG, FLOG2, FLOG10, FEXP, FEXP2, // FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR - Perform various unary floating // point operations. These are inspired by libm. FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW, FLOG, FLOG2, FLOG10, FEXP, FEXP2, FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR, // LOAD and STORE have token chains as their first operand, then the same // operands as an LLVM load/store instruction, then an offset node that // is added / subtracted from the base pointer to form the address (for // indexed memory ops). LOAD, STORE, // DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned // to a specified boundary. This node always has two return values: a new // stack pointer value and a chain. The first operand is the token chain, // the second is the number of bytes to allocate, and the third is the // alignment boundary. The size is guaranteed to be a multiple of the stack // alignment, and the alignment is guaranteed to be bigger than the stack // alignment (if required) or 0 to get standard stack alignment. DYNAMIC_STACKALLOC, // Control flow instructions. These all have token chains. // BR - Unconditional branch. The first operand is the chain // operand, the second is the MBB to branch to. BR, // BRIND - Indirect branch. The first operand is the chain, the second // is the value to branch to, which must be of the same type as the target's // pointer type. BRIND, // BR_JT - Jumptable branch. The first operand is the chain, the second // is the jumptable index, the last one is the jumptable entry index. BR_JT, // BRCOND - Conditional branch. The first operand is the chain, the // second is the condition, the third is the block to branch to if the // condition is true. If the type of the condition is not i1, then the // high bits must conform to getBooleanContents. BRCOND, // BR_CC - Conditional branch. The behavior is like that of SELECT_CC, in // that the condition is represented as condition code, and two nodes to // compare, rather than as a combined SetCC node. The operands in order are // chain, cc, lhs, rhs, block to branch to if condition is true. BR_CC, // INLINEASM - Represents an inline asm block. This node always has two // return values: a chain and a flag result. The inputs are as follows: // Operand #0 : Input chain. // Operand #1 : a ExternalSymbolSDNode with a pointer to the asm string. // Operand #2 : a MDNodeSDNode with the !srcloc metadata. // After this, it is followed by a list of operands with this format: // ConstantSDNode: Flags that encode whether it is a mem or not, the // of operands that follow, etc. See InlineAsm.h. // ... however many operands ... // Operand #last: Optional, an incoming flag. // // The variable width operands are required to represent target addressing // modes as a single "operand", even though they may have multiple // SDOperands. INLINEASM, // EH_LABEL - Represents a label in mid basic block used to track // locations needed for debug and exception handling tables. These nodes // take a chain as input and return a chain. EH_LABEL, // STACKSAVE - STACKSAVE has one operand, an input chain. It produces a // value, the same type as the pointer type for the system, and an output // chain. STACKSAVE, // STACKRESTORE has two operands, an input chain and a pointer to restore to // it returns an output chain. STACKRESTORE, // CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of // a call sequence, and carry arbitrary information that target might want // to know. The first operand is a chain, the rest are specified by the // target and not touched by the DAG optimizers. // CALLSEQ_START..CALLSEQ_END pairs may not be nested. CALLSEQ_START, // Beginning of a call sequence CALLSEQ_END, // End of a call sequence // VAARG - VAARG has four operands: an input chain, a pointer, a SRCVALUE, // and the alignment. It returns a pair of values: the vaarg value and a // new chain. VAARG, // VACOPY - VACOPY has five operands: an input chain, a destination pointer, // a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the // source. VACOPY, // VAEND, VASTART - VAEND and VASTART have three operands: an input chain, a // pointer, and a SRCVALUE. VAEND, VASTART, // SRCVALUE - This is a node type that holds a Value* that is used to // make reference to a value in the LLVM IR. SRCVALUE, // MDNODE_SDNODE - This is a node that holdes an MDNode*, which is used to // reference metadata in the IR. MDNODE_SDNODE, // PCMARKER - This corresponds to the pcmarker intrinsic. PCMARKER, // READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic. // The only operand is a chain and a value and a chain are produced. The // value is the contents of the architecture specific cycle counter like // register (or other high accuracy low latency clock source) READCYCLECOUNTER, // HANDLENODE node - Used as a handle for various purposes. HANDLENODE, // TRAMPOLINE - This corresponds to the init_trampoline intrinsic. // It takes as input a token chain, the pointer to the trampoline, // the pointer to the nested function, the pointer to pass for the // 'nest' parameter, a SRCVALUE for the trampoline and another for // the nested function (allowing targets to access the original // Function*). It produces the result of the intrinsic and a token // chain as output. TRAMPOLINE, // TRAP - Trapping instruction TRAP, // PREFETCH - This corresponds to a prefetch intrinsic. It takes chains are // their first operand. The other operands are the address to prefetch, // read / write specifier, and locality specifier. PREFETCH, // OUTCHAIN = MEMBARRIER(INCHAIN, load-load, load-store, store-load, // store-store, device) // This corresponds to the memory.barrier intrinsic. // it takes an input chain, 4 operands to specify the type of barrier, an // operand specifying if the barrier applies to device and uncached memory // and produces an output chain. MEMBARRIER, // Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap) // this corresponds to the atomic.lcs intrinsic. // cmp is compared to *ptr, and if equal, swap is stored in *ptr. // the return is always the original value in *ptr ATOMIC_CMP_SWAP, // Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt) // this corresponds to the atomic.swap intrinsic. // amt is stored to *ptr atomically. // the return is always the original value in *ptr ATOMIC_SWAP, // Val, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN, ptr, amt) // this corresponds to the atomic.load.[OpName] intrinsic. // op(*ptr, amt) is stored to *ptr atomically. // the return is always the original value in *ptr ATOMIC_LOAD_ADD, ATOMIC_LOAD_SUB, ATOMIC_LOAD_AND, ATOMIC_LOAD_OR, ATOMIC_LOAD_XOR, ATOMIC_LOAD_NAND, ATOMIC_LOAD_MIN, ATOMIC_LOAD_MAX, ATOMIC_LOAD_UMIN, ATOMIC_LOAD_UMAX, /// BUILTIN_OP_END - This must be the last enum value in this list. /// The target-specific pre-isel opcode values start here. BUILTIN_OP_END }; /// FIRST_TARGET_MEMORY_OPCODE - Target-specific pre-isel operations /// which do not reference a specific memory location should be less than /// this value. Those that do must not be less than this value, and can /// be used with SelectionDAG::getMemIntrinsicNode. static const int FIRST_TARGET_MEMORY_OPCODE = BUILTIN_OP_END+150; //===--------------------------------------------------------------------===// /// MemIndexedMode enum - This enum defines the load / store indexed /// addressing modes. /// /// UNINDEXED "Normal" load / store. The effective address is already /// computed and is available in the base pointer. The offset /// operand is always undefined. In addition to producing a /// chain, an unindexed load produces one value (result of the /// load); an unindexed store does not produce a value. /// /// PRE_INC Similar to the unindexed mode where the effective address is /// PRE_DEC the value of the base pointer add / subtract the offset. /// It considers the computation as being folded into the load / /// store operation (i.e. the load / store does the address /// computation as well as performing the memory transaction). /// The base operand is always undefined. In addition to /// producing a chain, pre-indexed load produces two values /// (result of the load and the result of the address /// computation); a pre-indexed store produces one value (result /// of the address computation). /// /// POST_INC The effective address is the value of the base pointer. The /// POST_DEC value of the offset operand is then added to / subtracted /// from the base after memory transaction. In addition to /// producing a chain, post-indexed load produces two values /// (the result of the load and the result of the base +/- offset /// computation); a post-indexed store produces one value (the /// the result of the base +/- offset computation). enum MemIndexedMode { UNINDEXED = 0, PRE_INC, PRE_DEC, POST_INC, POST_DEC, LAST_INDEXED_MODE }; //===--------------------------------------------------------------------===// /// LoadExtType enum - This enum defines the three variants of LOADEXT /// (load with extension). /// /// SEXTLOAD loads the integer operand and sign extends it to a larger /// integer result type. /// ZEXTLOAD loads the integer operand and zero extends it to a larger /// integer result type. /// EXTLOAD is used for two things: floating point extending loads and /// integer extending loads [the top bits are undefined]. enum LoadExtType { NON_EXTLOAD = 0, EXTLOAD, SEXTLOAD, ZEXTLOAD, LAST_LOADEXT_TYPE }; //===--------------------------------------------------------------------===// /// ISD::CondCode enum - These are ordered carefully to make the bitfields /// below work out, when considering SETFALSE (something that never exists /// dynamically) as 0. "U" -> Unsigned (for integer operands) or Unordered /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal /// to. If the "N" column is 1, the result of the comparison is undefined if /// the input is a NAN. /// /// All of these (except for the 'always folded ops') should be handled for /// floating point. For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT, /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used. /// /// Note that these are laid out in a specific order to allow bit-twiddling /// to transform conditions. enum CondCode { // Opcode N U L G E Intuitive operation SETFALSE, // 0 0 0 0 Always false (always folded) SETOEQ, // 0 0 0 1 True if ordered and equal SETOGT, // 0 0 1 0 True if ordered and greater than SETOGE, // 0 0 1 1 True if ordered and greater than or equal SETOLT, // 0 1 0 0 True if ordered and less than SETOLE, // 0 1 0 1 True if ordered and less than or equal SETONE, // 0 1 1 0 True if ordered and operands are unequal SETO, // 0 1 1 1 True if ordered (no nans) SETUO, // 1 0 0 0 True if unordered: isnan(X) | isnan(Y) SETUEQ, // 1 0 0 1 True if unordered or equal SETUGT, // 1 0 1 0 True if unordered or greater than SETUGE, // 1 0 1 1 True if unordered, greater than, or equal SETULT, // 1 1 0 0 True if unordered or less than SETULE, // 1 1 0 1 True if unordered, less than, or equal SETUNE, // 1 1 1 0 True if unordered or not equal SETTRUE, // 1 1 1 1 Always true (always folded) // Don't care operations: undefined if the input is a nan. SETFALSE2, // 1 X 0 0 0 Always false (always folded) SETEQ, // 1 X 0 0 1 True if equal SETGT, // 1 X 0 1 0 True if greater than SETGE, // 1 X 0 1 1 True if greater than or equal SETLT, // 1 X 1 0 0 True if less than SETLE, // 1 X 1 0 1 True if less than or equal SETNE, // 1 X 1 1 0 True if not equal SETTRUE2, // 1 X 1 1 1 Always true (always folded) SETCC_INVALID // Marker value. }; /// isSignedIntSetCC - Return true if this is a setcc instruction that /// performs a signed comparison when used with integer operands. inline bool isSignedIntSetCC(CondCode Code) { return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE; } /// isUnsignedIntSetCC - Return true if this is a setcc instruction that /// performs an unsigned comparison when used with integer operands. inline bool isUnsignedIntSetCC(CondCode Code) { return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE; } /// isTrueWhenEqual - Return true if the specified condition returns true if /// the two operands to the condition are equal. Note that if one of the two /// operands is a NaN, this value is meaningless. inline bool isTrueWhenEqual(CondCode Cond) { return ((int)Cond & 1) != 0; } /// getUnorderedFlavor - This function returns 0 if the condition is always /// false if an operand is a NaN, 1 if the condition is always true if the /// operand is a NaN, and 2 if the condition is undefined if the operand is a /// NaN. inline unsigned getUnorderedFlavor(CondCode Cond) { return ((int)Cond >> 3) & 3; } /// getSetCCInverse - Return the operation corresponding to !(X op Y), where /// 'op' is a valid SetCC operation. CondCode getSetCCInverse(CondCode Operation, bool isInteger); /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X) /// when given the operation for (X op Y). CondCode getSetCCSwappedOperands(CondCode Operation); /// getSetCCOrOperation - Return the result of a logical OR between different /// comparisons of identical values: ((X op1 Y) | (X op2 Y)). This /// function returns SETCC_INVALID if it is not possible to represent the /// resultant comparison. CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger); /// getSetCCAndOperation - Return the result of a logical AND between /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)). This /// function returns SETCC_INVALID if it is not possible to represent the /// resultant comparison. CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger); //===--------------------------------------------------------------------===// /// CvtCode enum - This enum defines the various converts CONVERT_RNDSAT /// supports. enum CvtCode { CVT_FF, // Float from Float CVT_FS, // Float from Signed CVT_FU, // Float from Unsigned CVT_SF, // Signed from Float CVT_UF, // Unsigned from Float CVT_SS, // Signed from Signed CVT_SU, // Signed from Unsigned CVT_US, // Unsigned from Signed CVT_UU, // Unsigned from Unsigned CVT_INVALID // Marker - Invalid opcode }; } // end llvm::ISD namespace } // end llvm namespace #endif