//====- X86InstrMMX.td - Describe the X86 Instruction Set --*- tablegen -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by Evan Cheng and is distributed under the // University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the X86 MMX instruction set, defining the instructions, // and properties of the instructions which are needed for code generation, // machine code emission, and analysis. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Instruction templates //===----------------------------------------------------------------------===// // MMXI - MMX instructions with TB prefix. // MMX2I - MMX / SSE2 instructions with TB and OpSize prefixes. // MMXIi8 - MMX instructions with ImmT == Imm8 and TB prefix. class MMXI o, Format F, dag ops, string asm, list pattern> : I, TB, Requires<[HasMMX]>; class MMX2I o, Format F, dag ops, string asm, list pattern> : I, TB, OpSize, Requires<[HasMMX]>; class MMXIi8 o, Format F, dag ops, string asm, list pattern> : Ii8, TB, Requires<[HasMMX]>; // Some 'special' instructions def IMPLICIT_DEF_VR64 : I<0, Pseudo, (ops VR64:$dst), "#IMPLICIT_DEF $dst", [(set VR64:$dst, (v8i8 (undef)))]>, Requires<[HasMMX]>; // 64-bit vector undef's. def : Pat<(v8i8 (undef)), (IMPLICIT_DEF_VR64)>; def : Pat<(v4i16 (undef)), (IMPLICIT_DEF_VR64)>; def : Pat<(v2i32 (undef)), (IMPLICIT_DEF_VR64)>; def : Pat<(v1i64 (undef)), (IMPLICIT_DEF_VR64)>; //===----------------------------------------------------------------------===// // MMX Pattern Fragments //===----------------------------------------------------------------------===// def load_mmx : PatFrag<(ops node:$ptr), (v1i64 (load node:$ptr))>; def bc_v8i8 : PatFrag<(ops node:$in), (v8i8 (bitconvert node:$in))>; def bc_v4i16 : PatFrag<(ops node:$in), (v4i16 (bitconvert node:$in))>; def bc_v2i32 : PatFrag<(ops node:$in), (v2i32 (bitconvert node:$in))>; def bc_v1i64 : PatFrag<(ops node:$in), (v1i64 (bitconvert node:$in))>; //===----------------------------------------------------------------------===// // MMX Multiclasses //===----------------------------------------------------------------------===// let isTwoAddress = 1 in { // MMXI_binop_rm - Simple MMX binary operator. multiclass MMXI_binop_rm opc, string OpcodeStr, SDNode OpNode, ValueType OpVT, bit Commutable = 0> { def rr : MMXI { let isCommutable = Commutable; } def rm : MMXI; } multiclass MMXI_binop_rm_int opc, string OpcodeStr, Intrinsic IntId, bit Commutable = 0> { def rr : MMXI { let isCommutable = Commutable; } def rm : MMXI; } // MMXI_binop_rm_v1i64 - Simple MMX binary operator whose type is v1i64. // // FIXME: we could eliminate this and use MMXI_binop_rm instead if tblgen knew // to collapse (bitconvert VT to VT) into its operand. // multiclass MMXI_binop_rm_v1i64 opc, string OpcodeStr, SDNode OpNode, bit Commutable = 0> { def rr : MMXI { let isCommutable = Commutable; } def rm : MMXI; } multiclass MMXI_binop_rmi_int opc, bits<8> opc2, Format ImmForm, string OpcodeStr, Intrinsic IntId> { def rr : MMXI; def rm : MMXI; def ri : MMXIi8; } } //===----------------------------------------------------------------------===// // MMX EMMS & FEMMS Instructions //===----------------------------------------------------------------------===// def MMX_EMMS : MMXI<0x77, RawFrm, (ops), "emms", [(int_x86_mmx_emms)]>; def MMX_FEMMS : MMXI<0x0E, RawFrm, (ops), "femms", [(int_x86_mmx_femms)]>; //===----------------------------------------------------------------------===// // MMX Scalar Instructions //===----------------------------------------------------------------------===// // Arithmetic Instructions // -- Addition defm MMX_PADDB : MMXI_binop_rm<0xFC, "paddb", add, v8i8, 1>; defm MMX_PADDW : MMXI_binop_rm<0xFD, "paddw", add, v4i16, 1>; defm MMX_PADDD : MMXI_binop_rm<0xFE, "paddd", add, v2i32, 1>; defm MMX_PADDQ : MMXI_binop_rm<0xD4, "paddq", add, v1i64, 1>; defm MMX_PADDSB : MMXI_binop_rm_int<0xEC, "paddsb" , int_x86_mmx_padds_b, 1>; defm MMX_PADDSW : MMXI_binop_rm_int<0xED, "paddsw" , int_x86_mmx_padds_w, 1>; defm MMX_PADDUSB : MMXI_binop_rm_int<0xDC, "paddusb", int_x86_mmx_paddus_b, 1>; defm MMX_PADDUSW : MMXI_binop_rm_int<0xDD, "paddusw", int_x86_mmx_paddus_w, 1>; // -- Subtraction defm MMX_PSUBB : MMXI_binop_rm<0xF8, "psubb", sub, v8i8>; defm MMX_PSUBW : MMXI_binop_rm<0xF9, "psubw", sub, v4i16>; defm MMX_PSUBD : MMXI_binop_rm<0xFA, "psubd", sub, v2i32>; defm MMX_PSUBSB : MMXI_binop_rm_int<0xE8, "psubsb" , int_x86_mmx_psubs_b>; defm MMX_PSUBSW : MMXI_binop_rm_int<0xE9, "psubsw" , int_x86_mmx_psubs_w>; defm MMX_PSUBUSB : MMXI_binop_rm_int<0xD8, "psubusb", int_x86_mmx_psubus_b>; defm MMX_PSUBUSW : MMXI_binop_rm_int<0xD9, "psubusw", int_x86_mmx_psubus_w>; // -- Multiplication defm MMX_PMULLW : MMXI_binop_rm<0xD5, "pmullw", mul, v4i16, 1>; defm MMX_PMULHW : MMXI_binop_rm_int<0xE5, "pmulhw" , int_x86_mmx_pmulh_w , 1>; // -- Multiply and Add defm MMX_PMADDWD : MMXI_binop_rm_int<0xF5, "pmaddwd", int_x86_mmx_pmadd_wd, 1>; // Logical Instructions defm MMX_PAND : MMXI_binop_rm_v1i64<0xDB, "pand", and, 1>; defm MMX_POR : MMXI_binop_rm_v1i64<0xEB, "por" , or, 1>; defm MMX_PXOR : MMXI_binop_rm_v1i64<0xEF, "pxor", xor, 1>; let isTwoAddress = 1 in { def MMX_PANDNrr : MMXI<0xDF, MRMSrcReg, (ops VR64:$dst, VR64:$src1, VR64:$src2), "pandn {$src2, $dst|$dst, $src2}", [(set VR64:$dst, (v1i64 (and (vnot VR64:$src1), VR64:$src2)))]>; def MMX_PANDNrm : MMXI<0xDF, MRMSrcMem, (ops VR64:$dst, VR64:$src1, i64mem:$src2), "pandn {$src2, $dst|$dst, $src2}", [(set VR64:$dst, (v1i64 (and (vnot VR64:$src1), (load addr:$src2))))]>; } // Shift Instructions defm MMX_PSRLW : MMXI_binop_rmi_int<0xD1, 0x71, MRM2r, "psrlw", int_x86_mmx_psrl_w>; defm MMX_PSRLD : MMXI_binop_rmi_int<0xD2, 0x72, MRM2r, "psrld", int_x86_mmx_psrl_d>; defm MMX_PSRLQ : MMXI_binop_rmi_int<0xD3, 0x73, MRM2r, "psrlq", int_x86_mmx_psrl_q>; defm MMX_PSLLW : MMXI_binop_rmi_int<0xF1, 0x71, MRM6r, "psllw", int_x86_mmx_psll_w>; defm MMX_PSLLD : MMXI_binop_rmi_int<0xF2, 0x72, MRM6r, "pslld", int_x86_mmx_psll_d>; defm MMX_PSLLQ : MMXI_binop_rmi_int<0xF3, 0x73, MRM6r, "psllq", int_x86_mmx_psll_q>; defm MMX_PSRAW : MMXI_binop_rmi_int<0xE1, 0x71, MRM4r, "psraw", int_x86_mmx_psra_w>; defm MMX_PSRAD : MMXI_binop_rmi_int<0xE2, 0x72, MRM4r, "psrad", int_x86_mmx_psra_d>; // Comparison Instructions defm MMX_PCMPEQB : MMXI_binop_rm_int<0x74, "pcmpeqb", int_x86_mmx_pcmpeq_b>; defm MMX_PCMPEQW : MMXI_binop_rm_int<0x75, "pcmpeqw", int_x86_mmx_pcmpeq_w>; defm MMX_PCMPEQD : MMXI_binop_rm_int<0x76, "pcmpeqd", int_x86_mmx_pcmpeq_d>; defm MMX_PCMPGTB : MMXI_binop_rm_int<0x64, "pcmpgtb", int_x86_mmx_pcmpgt_b>; defm MMX_PCMPGTW : MMXI_binop_rm_int<0x65, "pcmpgtw", int_x86_mmx_pcmpgt_w>; defm MMX_PCMPGTD : MMXI_binop_rm_int<0x66, "pcmpgtd", int_x86_mmx_pcmpgt_d>; // Conversion Instructions def MMX_UNPCKH_shuffle_mask : PatLeaf<(build_vector), [{ return X86::isUNPCKHMask(N); }]>; def MMX_UNPCKL_shuffle_mask : PatLeaf<(build_vector), [{ return X86::isUNPCKLMask(N); }]>; // -- Unpack Instructions let isTwoAddress = 1 in { // Unpack High Packed Data Instructions def MMX_PUNPCKHBWrr : MMXI<0x68, MRMSrcReg, (ops VR64:$dst, VR64:$src1, VR64:$src2), "punpckhbw {$src2, $dst|$dst, $src2}", [(set VR64:$dst, (v8i8 (vector_shuffle VR64:$src1, VR64:$src2, MMX_UNPCKH_shuffle_mask)))]>; def MMX_PUNPCKHBWrm : MMXI<0x68, MRMSrcMem, (ops VR64:$dst, VR64:$src1, i64mem:$src2), "punpckhbw {$src2, $dst|$dst, $src2}", [(set VR64:$dst, (v8i8 (vector_shuffle VR64:$src1, (bc_v8i8 (load_mmx addr:$src2)), MMX_UNPCKH_shuffle_mask)))]>; def MMX_PUNPCKHWDrr : MMXI<0x69, MRMSrcReg, (ops VR64:$dst, VR64:$src1, VR64:$src2), "punpckhwd {$src2, $dst|$dst, $src2}", [(set VR64:$dst, (v4i16 (vector_shuffle VR64:$src1, VR64:$src2, MMX_UNPCKH_shuffle_mask)))]>; def MMX_PUNPCKHWDrm : MMXI<0x69, MRMSrcMem, (ops VR64:$dst, VR64:$src1, i64mem:$src2), "punpckhwd {$src2, $dst|$dst, $src2}", [(set VR64:$dst, (v4i16 (vector_shuffle VR64:$src1, (bc_v4i16 (load_mmx addr:$src2)), MMX_UNPCKH_shuffle_mask)))]>; def MMX_PUNPCKHDQrr : MMXI<0x6A, MRMSrcReg, (ops VR64:$dst, VR64:$src1, VR64:$src2), "punpckhdq {$src2, $dst|$dst, $src2}", [(set VR64:$dst, (v2i32 (vector_shuffle VR64:$src1, VR64:$src2, MMX_UNPCKH_shuffle_mask)))]>; def MMX_PUNPCKHDQrm : MMXI<0x6A, MRMSrcMem, (ops VR64:$dst, VR64:$src1, i64mem:$src2), "punpckhdq {$src2, $dst|$dst, $src2}", [(set VR64:$dst, (v2i32 (vector_shuffle VR64:$src1, (bc_v2i32 (load_mmx addr:$src2)), MMX_UNPCKH_shuffle_mask)))]>; // Unpack Low Packed Data Instructions def MMX_PUNPCKLBWrr : MMXI<0x60, MRMSrcReg, (ops VR64:$dst, VR64:$src1, VR64:$src2), "punpcklbw {$src2, $dst|$dst, $src2}", [(set VR64:$dst, (v8i8 (vector_shuffle VR64:$src1, VR64:$src2, MMX_UNPCKL_shuffle_mask)))]>; def MMX_PUNPCKLBWrm : MMXI<0x60, MRMSrcMem, (ops VR64:$dst, VR64:$src1, i64mem:$src2), "punpcklbw {$src2, $dst|$dst, $src2}", [(set VR64:$dst, (v8i8 (vector_shuffle VR64:$src1, (bc_v8i8 (load_mmx addr:$src2)), MMX_UNPCKL_shuffle_mask)))]>; def MMX_PUNPCKLWDrr : MMXI<0x61, MRMSrcReg, (ops VR64:$dst, VR64:$src1, VR64:$src2), "punpcklwd {$src2, $dst|$dst, $src2}", [(set VR64:$dst, (v4i16 (vector_shuffle VR64:$src1, VR64:$src2, MMX_UNPCKL_shuffle_mask)))]>; def MMX_PUNPCKLWDrm : MMXI<0x61, MRMSrcMem, (ops VR64:$dst, VR64:$src1, i64mem:$src2), "punpcklwd {$src2, $dst|$dst, $src2}", [(set VR64:$dst, (v4i16 (vector_shuffle VR64:$src1, (bc_v4i16 (load_mmx addr:$src2)), MMX_UNPCKL_shuffle_mask)))]>; def MMX_PUNPCKLDQrr : MMXI<0x62, MRMSrcReg, (ops VR64:$dst, VR64:$src1, VR64:$src2), "punpckldq {$src2, $dst|$dst, $src2}", [(set VR64:$dst, (v2i32 (vector_shuffle VR64:$src1, VR64:$src2, MMX_UNPCKL_shuffle_mask)))]>; def MMX_PUNPCKLDQrm : MMXI<0x62, MRMSrcMem, (ops VR64:$dst, VR64:$src1, i64mem:$src2), "punpckldq {$src2, $dst|$dst, $src2}", [(set VR64:$dst, (v2i32 (vector_shuffle VR64:$src1, (bc_v2i32 (load_mmx addr:$src2)), MMX_UNPCKL_shuffle_mask)))]>; } // -- Pack Instructions defm MMX_PACKSSWB : MMXI_binop_rm_int<0x63, "packsswb", int_x86_mmx_packsswb>; defm MMX_PACKSSDW : MMXI_binop_rm_int<0x6B, "packssdw", int_x86_mmx_packssdw>; defm MMX_PACKUSWB : MMXI_binop_rm_int<0x67, "packuswb", int_x86_mmx_packuswb>; // Data Transfer Instructions def MMX_MOVD64rr : MMXI<0x6E, MRMSrcReg, (ops VR64:$dst, GR32:$src), "movd {$src, $dst|$dst, $src}", []>; def MMX_MOVD64rm : MMXI<0x6E, MRMSrcMem, (ops VR64:$dst, i32mem:$src), "movd {$src, $dst|$dst, $src}", []>; def MMX_MOVD64mr : MMXI<0x7E, MRMDestMem, (ops i32mem:$dst, VR64:$src), "movd {$src, $dst|$dst, $src}", []>; def MMX_MOVQ64rr : MMXI<0x6F, MRMSrcReg, (ops VR64:$dst, VR64:$src), "movq {$src, $dst|$dst, $src}", []>; def MMX_MOVQ64rm : MMXI<0x6F, MRMSrcMem, (ops VR64:$dst, i64mem:$src), "movq {$src, $dst|$dst, $src}", [(set VR64:$dst, (load_mmx addr:$src))]>; def MMX_MOVQ64mr : MMXI<0x7F, MRMDestMem, (ops i64mem:$dst, VR64:$src), "movq {$src, $dst|$dst, $src}", [(store (v1i64 VR64:$src), addr:$dst)]>; // Conversion instructions def MMX_CVTPD2PIrr : MMX2I<0x2D, MRMSrcReg, (ops VR64:$dst, VR128:$src), "cvtpd2pi {$src, $dst|$dst, $src}", []>; def MMX_CVTPD2PIrm : MMX2I<0x2D, MRMSrcMem, (ops VR64:$dst, f128mem:$src), "cvtpd2pi {$src, $dst|$dst, $src}", []>; def MMX_CVTPI2PDrr : MMX2I<0x2A, MRMSrcReg, (ops VR128:$dst, VR64:$src), "cvtpi2pd {$src, $dst|$dst, $src}", []>; def MMX_CVTPI2PDrm : MMX2I<0x2A, MRMSrcMem, (ops VR128:$dst, i64mem:$src), "cvtpi2pd {$src, $dst|$dst, $src}", []>; def MMX_CVTPI2PSrr : MMXI<0x2A, MRMSrcReg, (ops VR128:$dst, VR64:$src), "cvtpi2ps {$src, $dst|$dst, $src}", []>; def MMX_CVTPI2PSrm : MMXI<0x2A, MRMSrcMem, (ops VR128:$dst, i64mem:$src), "cvtpi2ps {$src, $dst|$dst, $src}", []>; def MMX_CVTPS2PIrr : MMXI<0x2D, MRMSrcReg, (ops VR64:$dst, VR128:$src), "cvtps2pi {$src, $dst|$dst, $src}", []>; def MMX_CVTPS2PIrm : MMXI<0x2D, MRMSrcMem, (ops VR64:$dst, f64mem:$src), "cvtps2pi {$src, $dst|$dst, $src}", []>; def MMX_CVTTPD2PIrr: MMX2I<0x2C, MRMSrcReg, (ops VR64:$dst, VR128:$src), "cvttpd2pi {$src, $dst|$dst, $src}", []>; def MMX_CVTTPD2PIrm: MMX2I<0x2C, MRMSrcMem, (ops VR64:$dst, f128mem:$src), "cvttpd2pi {$src, $dst|$dst, $src}", []>; def MMX_CVTTPS2PIrr: MMXI<0x2C, MRMSrcReg, (ops VR64:$dst, VR128:$src), "cvttps2pi {$src, $dst|$dst, $src}", []>; def MMX_CVTTPS2PIrm: MMXI<0x2C, MRMSrcMem, (ops VR64:$dst, f64mem:$src), "cvttps2pi {$src, $dst|$dst, $src}", []>; // Shuffle and unpack instructions def PSHUFWri : MMXIi8<0x70, MRMSrcReg, (ops VR64:$dst, VR64:$src1, i8imm:$src2), "pshufw {$src2, $src1, $dst|$dst, $src1, $src2}", []>; def PSHUFWmi : MMXIi8<0x70, MRMSrcMem, (ops VR64:$dst, i64mem:$src1, i8imm:$src2), "pshufw {$src2, $src1, $dst|$dst, $src1, $src2}", []>; // Misc. def MOVNTQ : I<0xE7, MRMDestMem, (ops i64mem:$dst, VR64:$src), "movntq {$src, $dst|$dst, $src}", []>, TB, Requires<[HasMMX]>; def MASKMOVQ : I<0xF7, MRMDestMem, (ops VR64:$src, VR64:$mask), "maskmovq {$mask, $src|$src, $mask}", []>, TB, Requires<[HasMMX]>; //===----------------------------------------------------------------------===// // Alias Instructions //===----------------------------------------------------------------------===// // Alias instructions that map zero vector to pxor. // FIXME: remove when we can teach regalloc that xor reg, reg is ok. let isReMaterializable = 1 in { def MMX_V_SET0 : MMXI<0xEF, MRMInitReg, (ops VR64:$dst), "pxor $dst, $dst", [(set VR64:$dst, (v1i64 immAllZerosV))]>; def MMX_V_SETALLONES : MMXI<0x76, MRMInitReg, (ops VR64:$dst), "pcmpeqd $dst, $dst", [(set VR64:$dst, (v1i64 immAllOnesV))]>; } //===----------------------------------------------------------------------===// // Non-Instruction Patterns //===----------------------------------------------------------------------===// // Store 64-bit integer vector values. def : Pat<(store (v8i8 VR64:$src), addr:$dst), (MMX_MOVQ64mr addr:$dst, VR64:$src)>; def : Pat<(store (v4i16 VR64:$src), addr:$dst), (MMX_MOVQ64mr addr:$dst, VR64:$src)>; def : Pat<(store (v2i32 VR64:$src), addr:$dst), (MMX_MOVQ64mr addr:$dst, VR64:$src)>; def : Pat<(store (v1i64 VR64:$src), addr:$dst), (MMX_MOVQ64mr addr:$dst, VR64:$src)>; // 64-bit vector all zero's. def : Pat<(v8i8 immAllZerosV), (MMX_V_SET0)>; def : Pat<(v4i16 immAllZerosV), (MMX_V_SET0)>; def : Pat<(v2i32 immAllZerosV), (MMX_V_SET0)>; def : Pat<(v1i64 immAllZerosV), (MMX_V_SET0)>; // 64-bit vector all one's. def : Pat<(v8i8 immAllOnesV), (MMX_V_SETALLONES)>; def : Pat<(v4i16 immAllOnesV), (MMX_V_SETALLONES)>; def : Pat<(v2i32 immAllOnesV), (MMX_V_SETALLONES)>; def : Pat<(v1i64 immAllOnesV), (MMX_V_SETALLONES)>; // Bit convert. def : Pat<(v8i8 (bitconvert (v1i64 VR64:$src))), (v8i8 VR64:$src)>; def : Pat<(v8i8 (bitconvert (v2i32 VR64:$src))), (v8i8 VR64:$src)>; def : Pat<(v8i8 (bitconvert (v4i16 VR64:$src))), (v8i8 VR64:$src)>; def : Pat<(v4i16 (bitconvert (v1i64 VR64:$src))), (v4i16 VR64:$src)>; def : Pat<(v4i16 (bitconvert (v2i32 VR64:$src))), (v4i16 VR64:$src)>; def : Pat<(v4i16 (bitconvert (v8i8 VR64:$src))), (v4i16 VR64:$src)>; def : Pat<(v2i32 (bitconvert (v1i64 VR64:$src))), (v2i32 VR64:$src)>; def : Pat<(v2i32 (bitconvert (v4i16 VR64:$src))), (v2i32 VR64:$src)>; def : Pat<(v2i32 (bitconvert (v8i8 VR64:$src))), (v2i32 VR64:$src)>; def : Pat<(v1i64 (bitconvert (v2i32 VR64:$src))), (v1i64 VR64:$src)>; def : Pat<(v1i64 (bitconvert (v4i16 VR64:$src))), (v1i64 VR64:$src)>; def : Pat<(v1i64 (bitconvert (v8i8 VR64:$src))), (v1i64 VR64:$src)>; def MMX_X86s2vec : SDNode<"X86ISD::S2VEC", SDTypeProfile<1, 1, []>, []>; // Scalar to v4i16 / v8i8. The source may be a GR32, but only the lower 8 or // 16-bits matter. def : Pat<(v8i8 (MMX_X86s2vec GR32:$src)), (MMX_MOVD64rr GR32:$src)>; def : Pat<(v4i16 (MMX_X86s2vec GR32:$src)), (MMX_MOVD64rr GR32:$src)>; // Recipes for: vector_shuffle v1, , <0, 0, 1, 1, ...> def MMX_UNPCKL_v_undef_shuffle_mask : PatLeaf<(build_vector), [{ return X86::isUNPCKL_v_undef_Mask(N); }]>; let AddedComplexity = 10 in { def : Pat<(v8i8 (vector_shuffle VR64:$src, (undef), MMX_UNPCKL_v_undef_shuffle_mask)), (MMX_PUNPCKLBWrr VR64:$src, VR64:$src)>; def : Pat<(v4i16 (vector_shuffle VR64:$src, (undef), MMX_UNPCKL_v_undef_shuffle_mask)), (MMX_PUNPCKLWDrr VR64:$src, VR64:$src)>; def : Pat<(v2i32 (vector_shuffle VR64:$src, (undef), MMX_UNPCKL_v_undef_shuffle_mask)), (MMX_PUNPCKLDQrr VR64:$src, VR64:$src)>; } let AddedComplexity = 20 in { def : Pat<(bc_v2i32 (vector_shuffle immAllZerosV, (v2i32 (scalar_to_vector (load_mmx addr:$src))), MMX_UNPCKL_shuffle_mask)), (MMX_PUNPCKLDQrm VR64:$src, VR64:$src)>; } // Some special case PANDN patterns. // FIXME: Get rid of these. def : Pat<(v1i64 (and (xor VR64:$src1, (bc_v1i64 (v2i32 immAllOnesV))), VR64:$src2)), (MMX_PANDNrr VR64:$src1, VR64:$src2)>; def : Pat<(v1i64 (and (xor VR64:$src1, (bc_v1i64 (v4i16 immAllOnesV))), VR64:$src2)), (MMX_PANDNrr VR64:$src1, VR64:$src2)>; def : Pat<(v1i64 (and (xor VR64:$src1, (bc_v1i64 (v8i8 immAllOnesV))), VR64:$src2)), (MMX_PANDNrr VR64:$src1, VR64:$src2)>; def : Pat<(v1i64 (and (xor VR64:$src1, (bc_v1i64 (v2i32 immAllOnesV))), (load addr:$src2))), (MMX_PANDNrm VR64:$src1, addr:$src2)>; def : Pat<(v1i64 (and (xor VR64:$src1, (bc_v1i64 (v4i16 immAllOnesV))), (load addr:$src2))), (MMX_PANDNrm VR64:$src1, addr:$src2)>; def : Pat<(v1i64 (and (xor VR64:$src1, (bc_v1i64 (v8i8 immAllOnesV))), (load addr:$src2))), (MMX_PANDNrm VR64:$src1, addr:$src2)>;