//===- PTXInstrInfo.td - PTX Instruction defs -----------------*- tblgen-*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the PTX instructions in TableGen format. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Instruction format superclass //===----------------------------------------------------------------------===// include "PTXInstrFormats.td" //===----------------------------------------------------------------------===// // Code Generation Predicates //===----------------------------------------------------------------------===// // Addressing def Use32BitAddresses : Predicate<"!getSubtarget().use64BitAddresses()">; def Use64BitAddresses : Predicate<"getSubtarget().use64BitAddresses()">; // Shader Model Support def SupportsSM13 : Predicate<"getSubtarget().supportsSM13()">; def DoesNotSupportSM13 : Predicate<"!getSubtarget().supportsSM13()">; def SupportsSM20 : Predicate<"getSubtarget().supportsSM20()">; def DoesNotSupportSM20 : Predicate<"!getSubtarget().supportsSM20()">; // PTX Version Support def SupportsPTX21 : Predicate<"getSubtarget().supportsPTX21()">; def DoesNotSupportPTX21 : Predicate<"!getSubtarget().supportsPTX21()">; def SupportsPTX22 : Predicate<"getSubtarget().supportsPTX22()">; def DoesNotSupportPTX22 : Predicate<"!getSubtarget().supportsPTX22()">; //===----------------------------------------------------------------------===// // Instruction Pattern Stuff //===----------------------------------------------------------------------===// def load_global : PatFrag<(ops node:$ptr), (load node:$ptr), [{ const Value *Src; const PointerType *PT; if ((Src = cast(N)->getSrcValue()) && (PT = dyn_cast(Src->getType()))) return PT->getAddressSpace() == PTX::GLOBAL; return false; }]>; def load_constant : PatFrag<(ops node:$ptr), (load node:$ptr), [{ const Value *Src; const PointerType *PT; if ((Src = cast(N)->getSrcValue()) && (PT = dyn_cast(Src->getType()))) return PT->getAddressSpace() == PTX::CONSTANT; return false; }]>; def load_local : PatFrag<(ops node:$ptr), (load node:$ptr), [{ const Value *Src; const PointerType *PT; if ((Src = cast(N)->getSrcValue()) && (PT = dyn_cast(Src->getType()))) return PT->getAddressSpace() == PTX::LOCAL; return false; }]>; def load_parameter : PatFrag<(ops node:$ptr), (load node:$ptr), [{ const Value *Src; const PointerType *PT; if ((Src = cast(N)->getSrcValue()) && (PT = dyn_cast(Src->getType()))) return PT->getAddressSpace() == PTX::PARAMETER; return false; }]>; def load_shared : PatFrag<(ops node:$ptr), (load node:$ptr), [{ const Value *Src; const PointerType *PT; if ((Src = cast(N)->getSrcValue()) && (PT = dyn_cast(Src->getType()))) return PT->getAddressSpace() == PTX::SHARED; return false; }]>; def store_global : PatFrag<(ops node:$d, node:$ptr), (store node:$d, node:$ptr), [{ const Value *Src; const PointerType *PT; if ((Src = cast(N)->getSrcValue()) && (PT = dyn_cast(Src->getType()))) return PT->getAddressSpace() == PTX::GLOBAL; return false; }]>; def store_local : PatFrag<(ops node:$d, node:$ptr), (store node:$d, node:$ptr), [{ const Value *Src; const PointerType *PT; if ((Src = cast(N)->getSrcValue()) && (PT = dyn_cast(Src->getType()))) return PT->getAddressSpace() == PTX::LOCAL; return false; }]>; def store_parameter : PatFrag<(ops node:$d, node:$ptr), (store node:$d, node:$ptr), [{ const Value *Src; const PointerType *PT; if ((Src = cast(N)->getSrcValue()) && (PT = dyn_cast(Src->getType()))) return PT->getAddressSpace() == PTX::PARAMETER; return false; }]>; def store_shared : PatFrag<(ops node:$d, node:$ptr), (store node:$d, node:$ptr), [{ const Value *Src; const PointerType *PT; if ((Src = cast(N)->getSrcValue()) && (PT = dyn_cast(Src->getType()))) return PT->getAddressSpace() == PTX::SHARED; return false; }]>; // Addressing modes. def ADDRrr32 : ComplexPattern; def ADDRrr64 : ComplexPattern; def ADDRri32 : ComplexPattern; def ADDRri64 : ComplexPattern; def ADDRii32 : ComplexPattern; def ADDRii64 : ComplexPattern; // Address operands def MEMri32 : Operand { let PrintMethod = "printMemOperand"; let MIOperandInfo = (ops RRegu32, i32imm); } def MEMri64 : Operand { let PrintMethod = "printMemOperand"; let MIOperandInfo = (ops RRegu64, i64imm); } def MEMii32 : Operand { let PrintMethod = "printMemOperand"; let MIOperandInfo = (ops i32imm, i32imm); } def MEMii64 : Operand { let PrintMethod = "printMemOperand"; let MIOperandInfo = (ops i64imm, i64imm); } // The operand here does not correspond to an actual address, so we // can use i32 in 64-bit address modes. def MEMpi : Operand { let PrintMethod = "printParamOperand"; let MIOperandInfo = (ops i32imm); } // Branch & call targets have OtherVT type. def brtarget : Operand; def calltarget : Operand; //===----------------------------------------------------------------------===// // PTX Specific Node Definitions //===----------------------------------------------------------------------===// // PTX allow generic 3-reg shifts like shl r0, r1, r2 def PTXshl : SDNode<"ISD::SHL", SDTIntBinOp>; def PTXsrl : SDNode<"ISD::SRL", SDTIntBinOp>; def PTXsra : SDNode<"ISD::SRA", SDTIntBinOp>; def PTXexit : SDNode<"PTXISD::EXIT", SDTNone, [SDNPHasChain]>; def PTXret : SDNode<"PTXISD::RET", SDTNone, [SDNPHasChain]>; def PTXcopyaddress : SDNode<"PTXISD::COPY_ADDRESS", SDTypeProfile<1, 1, []>, []>; //===----------------------------------------------------------------------===// // Instruction Class Templates //===----------------------------------------------------------------------===// //===- Floating-Point Instructions - 3 Operand Form -----------------------===// multiclass PTX_FLOAT_3OP { def rr32 : InstPTX<(outs RRegf32:$d), (ins RRegf32:$a, RRegf32:$b), !strconcat(opcstr, ".f32\t$d, $a, $b"), [(set RRegf32:$d, (opnode RRegf32:$a, RRegf32:$b))]>; def ri32 : InstPTX<(outs RRegf32:$d), (ins RRegf32:$a, f32imm:$b), !strconcat(opcstr, ".f32\t$d, $a, $b"), [(set RRegf32:$d, (opnode RRegf32:$a, fpimm:$b))]>; def rr64 : InstPTX<(outs RRegf64:$d), (ins RRegf64:$a, RRegf64:$b), !strconcat(opcstr, ".f64\t$d, $a, $b"), [(set RRegf64:$d, (opnode RRegf64:$a, RRegf64:$b))]>; def ri64 : InstPTX<(outs RRegf64:$d), (ins RRegf64:$a, f64imm:$b), !strconcat(opcstr, ".f64\t$d, $a, $b"), [(set RRegf64:$d, (opnode RRegf64:$a, fpimm:$b))]>; } //===- Floating-Point Instructions - 4 Operand Form -----------------------===// multiclass PTX_FLOAT_4OP { def rrr32 : InstPTX<(outs RRegf32:$d), (ins RRegf32:$a, RRegf32:$b, RRegf32:$c), !strconcat(opcstr, ".f32\t$d, $a, $b, $c"), [(set RRegf32:$d, (opnode2 (opnode1 RRegf32:$a, RRegf32:$b), RRegf32:$c))]>; def rri32 : InstPTX<(outs RRegf32:$d), (ins RRegf32:$a, RRegf32:$b, f32imm:$c), !strconcat(opcstr, ".f32\t$d, $a, $b, $c"), [(set RRegf32:$d, (opnode2 (opnode1 RRegf32:$a, RRegf32:$b), fpimm:$c))]>; def rrr64 : InstPTX<(outs RRegf64:$d), (ins RRegf64:$a, RRegf64:$b, RRegf64:$c), !strconcat(opcstr, ".f64\t$d, $a, $b, $c"), [(set RRegf64:$d, (opnode2 (opnode1 RRegf64:$a, RRegf64:$b), RRegf64:$c))]>; def rri64 : InstPTX<(outs RRegf64:$d), (ins RRegf64:$a, RRegf64:$b, f64imm:$c), !strconcat(opcstr, ".f64\t$d, $a, $b, $c"), [(set RRegf64:$d, (opnode2 (opnode1 RRegf64:$a, RRegf64:$b), fpimm:$c))]>; } multiclass INT3 { def rr16 : InstPTX<(outs RRegu16:$d), (ins RRegu16:$a, RRegu16:$b), !strconcat(opcstr, ".u16\t$d, $a, $b"), [(set RRegu16:$d, (opnode RRegu16:$a, RRegu16:$b))]>; def ri16 : InstPTX<(outs RRegu16:$d), (ins RRegu16:$a, i16imm:$b), !strconcat(opcstr, ".u16\t$d, $a, $b"), [(set RRegu16:$d, (opnode RRegu16:$a, imm:$b))]>; def rr32 : InstPTX<(outs RRegu32:$d), (ins RRegu32:$a, RRegu32:$b), !strconcat(opcstr, ".u32\t$d, $a, $b"), [(set RRegu32:$d, (opnode RRegu32:$a, RRegu32:$b))]>; def ri32 : InstPTX<(outs RRegu32:$d), (ins RRegu32:$a, i32imm:$b), !strconcat(opcstr, ".u32\t$d, $a, $b"), [(set RRegu32:$d, (opnode RRegu32:$a, imm:$b))]>; def rr64 : InstPTX<(outs RRegu64:$d), (ins RRegu64:$a, RRegu64:$b), !strconcat(opcstr, ".u64\t$d, $a, $b"), [(set RRegu64:$d, (opnode RRegu64:$a, RRegu64:$b))]>; def ri64 : InstPTX<(outs RRegu64:$d), (ins RRegu64:$a, i64imm:$b), !strconcat(opcstr, ".u64\t$d, $a, $b"), [(set RRegu64:$d, (opnode RRegu64:$a, imm:$b))]>; } multiclass PTX_LOGIC { def rr16 : InstPTX<(outs RRegu16:$d), (ins RRegu16:$a, RRegu16:$b), !strconcat(opcstr, ".b16\t$d, $a, $b"), [(set RRegu16:$d, (opnode RRegu16:$a, RRegu16:$b))]>; def ri16 : InstPTX<(outs RRegu16:$d), (ins RRegu16:$a, i16imm:$b), !strconcat(opcstr, ".b16\t$d, $a, $b"), [(set RRegu16:$d, (opnode RRegu16:$a, imm:$b))]>; def rr32 : InstPTX<(outs RRegu32:$d), (ins RRegu32:$a, RRegu32:$b), !strconcat(opcstr, ".b32\t$d, $a, $b"), [(set RRegu32:$d, (opnode RRegu32:$a, RRegu32:$b))]>; def ri32 : InstPTX<(outs RRegu32:$d), (ins RRegu32:$a, i32imm:$b), !strconcat(opcstr, ".b32\t$d, $a, $b"), [(set RRegu32:$d, (opnode RRegu32:$a, imm:$b))]>; def rr64 : InstPTX<(outs RRegu64:$d), (ins RRegu64:$a, RRegu64:$b), !strconcat(opcstr, ".b64\t$d, $a, $b"), [(set RRegu64:$d, (opnode RRegu64:$a, RRegu64:$b))]>; def ri64 : InstPTX<(outs RRegu64:$d), (ins RRegu64:$a, i64imm:$b), !strconcat(opcstr, ".b64\t$d, $a, $b"), [(set RRegu64:$d, (opnode RRegu64:$a, imm:$b))]>; } multiclass INT3ntnc { def rr : InstPTX<(outs RRegu32:$d), (ins RRegu32:$a, RRegu32:$b), !strconcat(opcstr, "\t$d, $a, $b"), [(set RRegu32:$d, (opnode RRegu32:$a, RRegu32:$b))]>; def ri : InstPTX<(outs RRegu32:$d), (ins RRegu32:$a, i32imm:$b), !strconcat(opcstr, "\t$d, $a, $b"), [(set RRegu32:$d, (opnode RRegu32:$a, imm:$b))]>; def ir : InstPTX<(outs RRegu32:$d), (ins i32imm:$a, RRegu32:$b), !strconcat(opcstr, "\t$d, $a, $b"), [(set RRegu32:$d, (opnode imm:$a, RRegu32:$b))]>; } multiclass PTX_SETP { def rr : InstPTX<(outs Preds:$d), (ins RC:$a, RC:$b), !strconcat("setp.", cmpstr, ".", regclsname, "\t$d, $a, $b"), [(set Preds:$d, (setcc RC:$a, RC:$b, cmp))]>; def ri : InstPTX<(outs Preds:$d), (ins RC:$a, immcls:$b), !strconcat("setp.", cmpstr, ".", regclsname, "\t$d, $a, $b"), [(set Preds:$d, (setcc RC:$a, imm:$b, cmp))]>; } multiclass PTX_LD { def rr32 : InstPTX<(outs RC:$d), (ins MEMri32:$a), !strconcat(opstr, !strconcat(typestr, "\t$d, [$a]")), [(set RC:$d, (pat_load ADDRrr32:$a))]>, Requires<[Use32BitAddresses]>; def rr64 : InstPTX<(outs RC:$d), (ins MEMri64:$a), !strconcat(opstr, !strconcat(typestr, "\t$d, [$a]")), [(set RC:$d, (pat_load ADDRrr64:$a))]>, Requires<[Use64BitAddresses]>; def ri32 : InstPTX<(outs RC:$d), (ins MEMri32:$a), !strconcat(opstr, !strconcat(typestr, "\t$d, [$a]")), [(set RC:$d, (pat_load ADDRri32:$a))]>, Requires<[Use32BitAddresses]>; def ri64 : InstPTX<(outs RC:$d), (ins MEMri64:$a), !strconcat(opstr, !strconcat(typestr, "\t$d, [$a]")), [(set RC:$d, (pat_load ADDRri64:$a))]>, Requires<[Use64BitAddresses]>; def ii32 : InstPTX<(outs RC:$d), (ins MEMii32:$a), !strconcat(opstr, !strconcat(typestr, "\t$d, [$a]")), [(set RC:$d, (pat_load ADDRii32:$a))]>, Requires<[Use32BitAddresses]>; def ii64 : InstPTX<(outs RC:$d), (ins MEMii64:$a), !strconcat(opstr, !strconcat(typestr, "\t$d, [$a]")), [(set RC:$d, (pat_load ADDRii64:$a))]>, Requires<[Use64BitAddresses]>; } multiclass PTX_LD_ALL { defm u16 : PTX_LD; defm u32 : PTX_LD; defm u64 : PTX_LD; defm f32 : PTX_LD; defm f64 : PTX_LD; } multiclass PTX_ST { def rr32 : InstPTX<(outs), (ins RC:$d, MEMri32:$a), !strconcat(opstr, !strconcat(typestr, "\t[$a], $d")), [(pat_store RC:$d, ADDRrr32:$a)]>, Requires<[Use32BitAddresses]>; def rr64 : InstPTX<(outs), (ins RC:$d, MEMri64:$a), !strconcat(opstr, !strconcat(typestr, "\t[$a], $d")), [(pat_store RC:$d, ADDRrr64:$a)]>, Requires<[Use64BitAddresses]>; def ri32 : InstPTX<(outs), (ins RC:$d, MEMri32:$a), !strconcat(opstr, !strconcat(typestr, "\t[$a], $d")), [(pat_store RC:$d, ADDRri32:$a)]>, Requires<[Use32BitAddresses]>; def ri64 : InstPTX<(outs), (ins RC:$d, MEMri64:$a), !strconcat(opstr, !strconcat(typestr, "\t[$a], $d")), [(pat_store RC:$d, ADDRri64:$a)]>, Requires<[Use64BitAddresses]>; def ii32 : InstPTX<(outs), (ins RC:$d, MEMii32:$a), !strconcat(opstr, !strconcat(typestr, "\t[$a], $d")), [(pat_store RC:$d, ADDRii32:$a)]>, Requires<[Use32BitAddresses]>; def ii64 : InstPTX<(outs), (ins RC:$d, MEMii64:$a), !strconcat(opstr, !strconcat(typestr, "\t[$a], $d")), [(pat_store RC:$d, ADDRii64:$a)]>, Requires<[Use64BitAddresses]>; } multiclass PTX_ST_ALL { defm u16 : PTX_ST; defm u32 : PTX_ST; defm u64 : PTX_ST; defm f32 : PTX_ST; defm f64 : PTX_ST; } //===----------------------------------------------------------------------===// // Instructions //===----------------------------------------------------------------------===// ///===- Integer Arithmetic Instructions -----------------------------------===// defm ADD : INT3<"add", add>; defm SUB : INT3<"sub", sub>; defm MUL : INT3<"mul.lo", mul>; // FIXME: Allow 32x32 -> 64 multiplies ///===- Floating-Point Arithmetic Instructions ----------------------------===// // Standard Binary Operations defm FADD : PTX_FLOAT_3OP<"add", fadd>; defm FSUB : PTX_FLOAT_3OP<"sub", fsub>; defm FMUL : PTX_FLOAT_3OP<"mul", fmul>; // TODO: Allow user selection of rounding modes for fdiv. // For division, we need to have f32 and f64 differently. // For f32, we just always use .approx since it is supported on all hardware // for PTX 1.4+, which is our minimum target. def FDIVrr32 : InstPTX<(outs RRegf32:$d), (ins RRegf32:$a, RRegf32:$b), "div.approx.f32\t$d, $a, $b", [(set RRegf32:$d, (fdiv RRegf32:$a, RRegf32:$b))]>; def FDIVri32 : InstPTX<(outs RRegf32:$d), (ins RRegf32:$a, f32imm:$b), "div.approx.f32\t$d, $a, $b", [(set RRegf32:$d, (fdiv RRegf32:$a, fpimm:$b))]>; // For f64, we must specify a rounding for sm 1.3+ but *not* for sm 1.0. def FDIVrr64SM13 : InstPTX<(outs RRegf64:$d), (ins RRegf64:$a, RRegf64:$b), "div.rn.f64\t$d, $a, $b", [(set RRegf64:$d, (fdiv RRegf64:$a, RRegf64:$b))]>, Requires<[SupportsSM13]>; def FDIVri64SM13 : InstPTX<(outs RRegf64:$d), (ins RRegf64:$a, f64imm:$b), "div.rn.f64\t$d, $a, $b", [(set RRegf64:$d, (fdiv RRegf64:$a, fpimm:$b))]>, Requires<[SupportsSM13]>; def FDIVrr64SM10 : InstPTX<(outs RRegf64:$d), (ins RRegf64:$a, RRegf64:$b), "div.f64\t$d, $a, $b", [(set RRegf64:$d, (fdiv RRegf64:$a, RRegf64:$b))]>, Requires<[DoesNotSupportSM13]>; def FDIVri64SM10 : InstPTX<(outs RRegf64:$d), (ins RRegf64:$a, f64imm:$b), "div.f64\t$d, $a, $b", [(set RRegf64:$d, (fdiv RRegf64:$a, fpimm:$b))]>, Requires<[DoesNotSupportSM13]>; // Multi-operation hybrid instructions // The selection of mad/fma is tricky. In some cases, they are the *same* // instruction, but in other cases we may prefer one or the other. Also, // different PTX versions differ on whether rounding mode flags are required. // In the short term, mad is supported on all PTX versions and we use a // default rounding mode no matter what shader model or PTX version. // TODO: Allow the rounding mode to be selectable through llc. defm FMADSM13 : PTX_FLOAT_4OP<"mad.rn", fmul, fadd>, Requires<[SupportsSM13]>; defm FMAD : PTX_FLOAT_4OP<"mad", fmul, fadd>, Requires<[DoesNotSupportSM13]>; ///===- Floating-Point Intrinsic Instructions -----------------------------===// def FSQRT32 : InstPTX<(outs RRegf32:$d), (ins RRegf32:$a), "sqrt.rn.f32\t$d, $a", [(set RRegf32:$d, (fsqrt RRegf32:$a))]>; def FSQRT64 : InstPTX<(outs RRegf64:$d), (ins RRegf64:$a), "sqrt.rn.f64\t$d, $a", [(set RRegf64:$d, (fsqrt RRegf64:$a))]>; def FSIN32 : InstPTX<(outs RRegf32:$d), (ins RRegf32:$a), "sin.approx.f32\t$d, $a", [(set RRegf32:$d, (fsin RRegf32:$a))]>; def FSIN64 : InstPTX<(outs RRegf64:$d), (ins RRegf64:$a), "sin.approx.f64\t$d, $a", [(set RRegf64:$d, (fsin RRegf64:$a))]>; def FCOS32 : InstPTX<(outs RRegf32:$d), (ins RRegf32:$a), "cos.approx.f32\t$d, $a", [(set RRegf32:$d, (fcos RRegf32:$a))]>; def FCOS64 : InstPTX<(outs RRegf64:$d), (ins RRegf64:$a), "cos.approx.f64\t$d, $a", [(set RRegf64:$d, (fcos RRegf64:$a))]>; ///===- Comparison and Selection Instructions -----------------------------===// defm SETPEQu32 : PTX_SETP; defm SETPNEu32 : PTX_SETP; defm SETPLTu32 : PTX_SETP; defm SETPLEu32 : PTX_SETP; defm SETPGTu32 : PTX_SETP; defm SETPGEu32 : PTX_SETP; ///===- Logic and Shift Instructions --------------------------------------===// defm SHL : INT3ntnc<"shl.b32", PTXshl>; defm SRL : INT3ntnc<"shr.u32", PTXsrl>; defm SRA : INT3ntnc<"shr.s32", PTXsra>; defm AND : PTX_LOGIC<"and", and>; defm OR : PTX_LOGIC<"or", or>; defm XOR : PTX_LOGIC<"xor", xor>; ///===- Data Movement and Conversion Instructions -------------------------===// let neverHasSideEffects = 1 in { def MOVPREDrr : InstPTX<(outs Preds:$d), (ins Preds:$a), "mov.pred\t$d, $a", []>; def MOVU16rr : InstPTX<(outs RRegu16:$d), (ins RRegu16:$a), "mov.u16\t$d, $a", []>; def MOVU32rr : InstPTX<(outs RRegu32:$d), (ins RRegu32:$a), "mov.u32\t$d, $a", []>; def MOVU64rr : InstPTX<(outs RRegu64:$d), (ins RRegu64:$a), "mov.u64\t$d, $a", []>; def MOVF32rr : InstPTX<(outs RRegf32:$d), (ins RRegf32:$a), "mov.f32\t$d, $a", []>; def MOVF64rr : InstPTX<(outs RRegf64:$d), (ins RRegf64:$a), "mov.f64\t$d, $a", []>; } let isReMaterializable = 1, isAsCheapAsAMove = 1 in { def MOVPREDri : InstPTX<(outs Preds:$d), (ins i1imm:$a), "mov.pred\t$d, $a", [(set Preds:$d, imm:$a)]>; def MOVU16ri : InstPTX<(outs RRegu16:$d), (ins i16imm:$a), "mov.u16\t$d, $a", [(set RRegu16:$d, imm:$a)]>; def MOVU32ri : InstPTX<(outs RRegu32:$d), (ins i32imm:$a), "mov.u32\t$d, $a", [(set RRegu32:$d, imm:$a)]>; def MOVU164ri : InstPTX<(outs RRegu64:$d), (ins i64imm:$a), "mov.u64\t$d, $a", [(set RRegu64:$d, imm:$a)]>; def MOVF32ri : InstPTX<(outs RRegf32:$d), (ins f32imm:$a), "mov.f32\t$d, $a", [(set RRegf32:$d, fpimm:$a)]>; def MOVF64ri : InstPTX<(outs RRegf64:$d), (ins f64imm:$a), "mov.f64\t$d, $a", [(set RRegf64:$d, fpimm:$a)]>; } let isReMaterializable = 1, isAsCheapAsAMove = 1 in { def MOVaddr : InstPTX<(outs RRegu32:$d), (ins i32imm:$a), "mov.u32\t$d, $a", [(set RRegu32:$d, (PTXcopyaddress tglobaladdr:$a))]>; } // Loads defm LDg : PTX_LD_ALL<"ld.global", load_global>; defm LDc : PTX_LD_ALL<"ld.const", load_constant>; defm LDl : PTX_LD_ALL<"ld.local", load_local>; defm LDs : PTX_LD_ALL<"ld.shared", load_shared>; // This is a special instruction that is manually inserted for kernel parameters def LDpiU16 : InstPTX<(outs RRegu16:$d), (ins MEMpi:$a), "ld.param.u16\t$d, [$a]", []>; def LDpiU32 : InstPTX<(outs RRegu32:$d), (ins MEMpi:$a), "ld.param.u32\t$d, [$a]", []>; def LDpiU64 : InstPTX<(outs RRegu64:$d), (ins MEMpi:$a), "ld.param.u64\t$d, [$a]", []>; def LDpiF32 : InstPTX<(outs RRegf32:$d), (ins MEMpi:$a), "ld.param.f32\t$d, [$a]", []>; def LDpiF64 : InstPTX<(outs RRegf64:$d), (ins MEMpi:$a), "ld.param.f64\t$d, [$a]", []>; // Stores defm STg : PTX_ST_ALL<"st.global", store_global>; defm STl : PTX_ST_ALL<"st.local", store_local>; defm STs : PTX_ST_ALL<"st.shared", store_shared>; // defm STp : PTX_ST_ALL<"st.param", store_parameter>; // defm LDp : PTX_LD_ALL<"ld.param", load_parameter>; // TODO: Do something with st.param if/when it is needed. def CVT_u32_pred : InstPTX<(outs RRegu32:$d), (ins Preds:$a), "cvt.u32.pred\t$d, $a", [(set RRegu32:$d, (zext Preds:$a))]>; ///===- Control Flow Instructions -----------------------------------------===// let isBranch = 1, isTerminator = 1, isBarrier = 1 in { def BRAd : InstPTX<(outs), (ins brtarget:$d), "bra\t$d", [(br bb:$d)]>; } let isBranch = 1, isTerminator = 1 in { // FIXME: should be able to write a pattern for brcond, but can't use // a two-value operand where a dag node expects two operands. :( // NOTE: ARM & PowerPC backend also report the same problem def BRAdp : InstPTX<(outs), (ins brtarget:$d), "bra\t$d", [/*(brcond bb:$d, Preds:$p, i32imm:$c)*/]>; } let isReturn = 1, isTerminator = 1, isBarrier = 1 in { def EXIT : InstPTX<(outs), (ins), "exit", [(PTXexit)]>; def RET : InstPTX<(outs), (ins), "ret", [(PTXret)]>; } ///===- Intrinsic Instructions --------------------------------------------===// include "PTXIntrinsicInstrInfo.td"