//===-- llvm/Support/Casting.h - Allow flexible, checked, casts -*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the isa(), cast(), dyn_cast(), cast_or_null(), // and dyn_cast_or_null() templates. // //===----------------------------------------------------------------------===// #ifndef LLVM_SUPPORT_CASTING_H #define LLVM_SUPPORT_CASTING_H #include namespace llvm { //===----------------------------------------------------------------------===// // isa Support Templates //===----------------------------------------------------------------------===// template struct isa_impl_cl; // Define a template that can be specialized by smart pointers to reflect the // fact that they are automatically dereferenced, and are not involved with the // template selection process... the default implementation is a noop. // template struct simplify_type { typedef From SimpleType; // The real type this represents... // An accessor to get the real value... static SimpleType &getSimplifiedValue(From &Val) { return Val; } }; template struct simplify_type { typedef const From SimpleType; static SimpleType &getSimplifiedValue(const From &Val) { return simplify_type::getSimplifiedValue(static_cast(Val)); } }; // isa - Return true if the parameter to the template is an instance of the // template type argument. Used like this: // // if (isa(myVal)) { ... } // template inline bool isa_impl(const From &Val) { return To::classof(&Val); } template struct isa_impl_wrap { // When From != SimplifiedType, we can simplify the type some more by using // the simplify_type template. static bool doit(const From &Val) { return isa_impl_cl::template isa(simplify_type::getSimplifiedValue(Val)); } }; template struct isa_impl_wrap { // When From == SimpleType, we are as simple as we are going to get. static bool doit(const FromTy &Val) { return isa_impl(Val); } }; // isa_impl_cl - Use class partial specialization to transform types to a single // canonical form for isa_impl. // template struct isa_impl_cl { template static bool isa(const FromCl &Val) { return isa_impl_wrap::SimpleType>::doit(Val); } }; // Specialization used to strip const qualifiers off of the FromCl type... template struct isa_impl_cl { template static bool isa(const FromCl &Val) { return isa_impl_cl::template isa(Val); } }; // Define pointer traits in terms of base traits... template struct isa_impl_cl { template static bool isa(FromCl *Val) { return (Val != 0 && isa_impl_cl::template isa(*Val)); } }; // Define reference traits in terms of base traits... template struct isa_impl_cl { template static bool isa(FromCl &Val) { return isa_impl_cl::template isa(&Val); } }; template inline bool isa(const Y &Val) { return isa_impl_cl::template isa(Val); } //===----------------------------------------------------------------------===// // cast Support Templates //===----------------------------------------------------------------------===// template struct cast_retty; // Calculate what type the 'cast' function should return, based on a requested // type of To and a source type of From. template struct cast_retty_impl { typedef To& ret_type; // Normal case, return Ty& }; template struct cast_retty_impl { typedef const To &ret_type; // Normal case, return Ty& }; template struct cast_retty_impl { typedef To* ret_type; // Pointer arg case, return Ty* }; template struct cast_retty_impl { typedef const To* ret_type; // Constant pointer arg case, return const Ty* }; template struct cast_retty_impl { typedef const To* ret_type; // Constant pointer arg case, return const Ty* }; template struct cast_retty_wrap { // When the simplified type and the from type are not the same, use the type // simplifier to reduce the type, then reuse cast_retty_impl to get the // resultant type. typedef typename cast_retty::ret_type ret_type; }; template struct cast_retty_wrap { // When the simplified type is equal to the from type, use it directly. typedef typename cast_retty_impl::ret_type ret_type; }; template struct cast_retty { typedef typename cast_retty_wrap::SimpleType>::ret_type ret_type; }; // Ensure the non-simple values are converted using the simplify_type template // that may be specialized by smart pointers... // template struct cast_convert_val { // This is not a simple type, use the template to simplify it... static typename cast_retty::ret_type doit(const From &Val) { return cast_convert_val::SimpleType>::doit( simplify_type::getSimplifiedValue(Val)); } }; template struct cast_convert_val { // This _is_ a simple type, just cast it. static typename cast_retty::ret_type doit(const FromTy &Val) { return reinterpret_cast::ret_type>( const_cast(Val)); } }; // cast - Return the argument parameter cast to the specified type. This // casting operator asserts that the type is correct, so it does not return null // on failure. But it will correctly return NULL when the input is NULL. // Used Like this: // // cast(myVal)->getParent() // template inline typename cast_retty::ret_type cast(const Y &Val) { assert(isa(Val) && "cast() argument of incompatible type!"); return cast_convert_val::SimpleType>::doit(Val); } // cast_or_null - Functionally identical to cast, except that a null value is // accepted. // template inline typename cast_retty::ret_type cast_or_null(Y *Val) { if (Val == 0) return 0; assert(isa(Val) && "cast_or_null() argument of incompatible type!"); return cast(Val); } // dyn_cast - Return the argument parameter cast to the specified type. This // casting operator returns null if the argument is of the wrong type, so it can // be used to test for a type as well as cast if successful. This should be // used in the context of an if statement like this: // // if (const Instruction *I = dyn_cast(myVal)) { ... } // template inline typename cast_retty::ret_type dyn_cast(const Y &Val) { return isa(Val) ? cast(Val) : 0; } // dyn_cast_or_null - Functionally identical to dyn_cast, except that a null // value is accepted. // template inline typename cast_retty::ret_type dyn_cast_or_null(const Y &Val) { return (Val && isa(Val)) ? cast(Val) : 0; } #ifdef DEBUG_CAST_OPERATORS #include "llvm/Support/Streams.h" struct bar { bar() {} private: bar(const bar &); }; struct foo { void ext() const; /* static bool classof(const bar *X) { cerr << "Classof: " << X << "\n"; return true; }*/ }; template <> inline bool isa_impl(const bar &Val) { cerr << "Classof: " << &Val << "\n"; return true; } bar *fub(); void test(bar &B1, const bar *B2) { // test various configurations of const const bar &B3 = B1; const bar *const B4 = B2; // test isa if (!isa(B1)) return; if (!isa(B2)) return; if (!isa(B3)) return; if (!isa(B4)) return; // test cast foo &F1 = cast(B1); const foo *F3 = cast(B2); const foo *F4 = cast(B2); const foo &F8 = cast(B3); const foo *F9 = cast(B4); foo *F10 = cast(fub()); // test cast_or_null const foo *F11 = cast_or_null(B2); const foo *F12 = cast_or_null(B2); const foo *F13 = cast_or_null(B4); const foo *F14 = cast_or_null(fub()); // Shouldn't print. // These lines are errors... //foo *F20 = cast(B2); // Yields const foo* //foo &F21 = cast(B3); // Yields const foo& //foo *F22 = cast(B4); // Yields const foo* //foo &F23 = cast_or_null(B1); //const foo &F24 = cast_or_null(B3); } bar *fub() { return 0; } void main() { bar B; test(B, &B); } #endif } // End llvm namespace #endif