//===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the LiveVariable analysis pass. For each machine // instruction in the function, this pass calculates the set of registers that // are immediately dead after the instruction (i.e., the instruction calculates // the value, but it is never used) and the set of registers that are used by // the instruction, but are never used after the instruction (i.e., they are // killed). // // This class computes live variables using are sparse implementation based on // the machine code SSA form. This class computes live variable information for // each virtual and _register allocatable_ physical register in a function. It // uses the dominance properties of SSA form to efficiently compute live // variables for virtual registers, and assumes that physical registers are only // live within a single basic block (allowing it to do a single local analysis // to resolve physical register lifetimes in each basic block). If a physical // register is not register allocatable, it is not tracked. This is useful for // things like the stack pointer and condition codes. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/LiveVariables.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Config/alloca.h" #include using namespace llvm; char LiveVariables::ID = 0; static RegisterPass X("livevars", "Live Variable Analysis"); void LiveVariables::VarInfo::dump() const { cerr << " Alive in blocks: "; for (unsigned i = 0, e = AliveBlocks.size(); i != e; ++i) if (AliveBlocks[i]) cerr << i << ", "; cerr << " Used in blocks: "; for (unsigned i = 0, e = UsedBlocks.size(); i != e; ++i) if (UsedBlocks[i]) cerr << i << ", "; cerr << "\n Killed by:"; if (Kills.empty()) cerr << " No instructions.\n"; else { for (unsigned i = 0, e = Kills.size(); i != e; ++i) cerr << "\n #" << i << ": " << *Kills[i]; cerr << "\n"; } } /// getVarInfo - Get (possibly creating) a VarInfo object for the given vreg. LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) { assert(TargetRegisterInfo::isVirtualRegister(RegIdx) && "getVarInfo: not a virtual register!"); RegIdx -= TargetRegisterInfo::FirstVirtualRegister; if (RegIdx >= VirtRegInfo.size()) { if (RegIdx >= 2*VirtRegInfo.size()) VirtRegInfo.resize(RegIdx*2); else VirtRegInfo.resize(2*VirtRegInfo.size()); } VarInfo &VI = VirtRegInfo[RegIdx]; VI.AliveBlocks.resize(MF->getNumBlockIDs()); VI.UsedBlocks.resize(MF->getNumBlockIDs()); return VI; } void LiveVariables::MarkVirtRegAliveInBlock(VarInfo& VRInfo, MachineBasicBlock *DefBlock, MachineBasicBlock *MBB, std::vector &WorkList) { unsigned BBNum = MBB->getNumber(); // Check to see if this basic block is one of the killing blocks. If so, // remove it. for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) if (VRInfo.Kills[i]->getParent() == MBB) { VRInfo.Kills.erase(VRInfo.Kills.begin()+i); // Erase entry break; } if (MBB == DefBlock) return; // Terminate recursion if (VRInfo.AliveBlocks[BBNum]) return; // We already know the block is live // Mark the variable known alive in this bb VRInfo.AliveBlocks[BBNum] = true; for (MachineBasicBlock::const_pred_reverse_iterator PI = MBB->pred_rbegin(), E = MBB->pred_rend(); PI != E; ++PI) WorkList.push_back(*PI); } void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo, MachineBasicBlock *DefBlock, MachineBasicBlock *MBB) { std::vector WorkList; MarkVirtRegAliveInBlock(VRInfo, DefBlock, MBB, WorkList); while (!WorkList.empty()) { MachineBasicBlock *Pred = WorkList.back(); WorkList.pop_back(); MarkVirtRegAliveInBlock(VRInfo, DefBlock, Pred, WorkList); } } void LiveVariables::HandleVirtRegUse(unsigned reg, MachineBasicBlock *MBB, MachineInstr *MI) { assert(MRI->getVRegDef(reg) && "Register use before def!"); unsigned BBNum = MBB->getNumber(); VarInfo& VRInfo = getVarInfo(reg); VRInfo.UsedBlocks[BBNum] = true; VRInfo.NumUses++; // Check to see if this basic block is already a kill block. if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) { // Yes, this register is killed in this basic block already. Increase the // live range by updating the kill instruction. VRInfo.Kills.back() = MI; return; } #ifndef NDEBUG for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!"); #endif assert(MBB != MRI->getVRegDef(reg)->getParent() && "Should have kill for defblock!"); // Add a new kill entry for this basic block. If this virtual register is // already marked as alive in this basic block, that means it is alive in at // least one of the successor blocks, it's not a kill. if (!VRInfo.AliveBlocks[BBNum]) VRInfo.Kills.push_back(MI); // Update all dominating blocks to mark them as "known live". for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), E = MBB->pred_end(); PI != E; ++PI) MarkVirtRegAliveInBlock(VRInfo, MRI->getVRegDef(reg)->getParent(), *PI); } /// HandlePhysRegUse - Turn previous partial def's into read/mod/writes. Add /// implicit defs to a machine instruction if there was an earlier def of its /// super-register. void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) { // Turn previous partial def's into read/mod/write. for (unsigned i = 0, e = PhysRegPartDef[Reg].size(); i != e; ++i) { MachineInstr *Def = PhysRegPartDef[Reg][i]; // First one is just a def. This means the use is reading some undef bits. if (i != 0) Def->addOperand(MachineOperand::CreateReg(Reg, false /*IsDef*/, true /*IsImp*/, true /*IsKill*/)); Def->addOperand(MachineOperand::CreateReg(Reg, true /*IsDef*/, true /*IsImp*/)); } PhysRegPartDef[Reg].clear(); // There was an earlier def of a super-register. Add implicit def to that MI. // // A: EAX = ... // B: ... = AX // // Add implicit def to A. if (PhysRegInfo[Reg] && PhysRegInfo[Reg] != PhysRegPartUse[Reg] && !PhysRegUsed[Reg]) { MachineInstr *Def = PhysRegInfo[Reg]; if (!Def->modifiesRegister(Reg)) Def->addOperand(MachineOperand::CreateReg(Reg, true /*IsDef*/, true /*IsImp*/)); } // There is a now a proper use, forget about the last partial use. PhysRegPartUse[Reg] = NULL; PhysRegInfo[Reg] = MI; PhysRegUsed[Reg] = true; // Now reset the use information for the sub-registers. for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); unsigned SubReg = *SubRegs; ++SubRegs) { PhysRegPartUse[SubReg] = NULL; PhysRegInfo[SubReg] = MI; PhysRegUsed[SubReg] = true; } for (const unsigned *SuperRegs = TRI->getSuperRegisters(Reg); unsigned SuperReg = *SuperRegs; ++SuperRegs) { // Remember the partial use of this super-register if it was previously // defined. bool HasPrevDef = PhysRegInfo[SuperReg] != NULL; if (!HasPrevDef) // No need to go up more levels. A def of a register also sets its sub- // registers. So if PhysRegInfo[SuperReg] is NULL, it means SuperReg's // super-registers are not previously defined. for (const unsigned *SSRegs = TRI->getSuperRegisters(SuperReg); unsigned SSReg = *SSRegs; ++SSRegs) if (PhysRegInfo[SSReg] != NULL) { HasPrevDef = true; break; } if (HasPrevDef) { PhysRegInfo[SuperReg] = MI; PhysRegPartUse[SuperReg] = MI; } } } /// addRegisterKills - For all of a register's sub-registers that are killed in /// at this machine instruction, mark them as "killed". (If the machine operand /// isn't found, add it first.) void LiveVariables::addRegisterKills(unsigned Reg, MachineInstr *MI, SmallSet &SubKills) { if (SubKills.count(Reg) == 0) { MI->addRegisterKilled(Reg, TRI, true); return; } for (const unsigned *SubRegs = TRI->getImmediateSubRegisters(Reg); unsigned SubReg = *SubRegs; ++SubRegs) addRegisterKills(SubReg, MI, SubKills); } /// HandlePhysRegKill - The recursive version of HandlePhysRegKill. Returns true /// if: /// /// - The register has no sub-registers and the machine instruction is the /// last def/use of the register, or /// - The register has sub-registers and none of them are killed elsewhere. /// /// SubKills is filled with the set of sub-registers that are killed elsewhere. bool LiveVariables::HandlePhysRegKill(unsigned Reg, const MachineInstr *RefMI, SmallSet &SubKills) { const unsigned *SubRegs = TRI->getImmediateSubRegisters(Reg); for (; unsigned SubReg = *SubRegs; ++SubRegs) { const MachineInstr *LastRef = PhysRegInfo[SubReg]; if (LastRef != RefMI || !HandlePhysRegKill(SubReg, RefMI, SubKills)) SubKills.insert(SubReg); } if (*SubRegs == 0) { // No sub-registers, just check if reg is killed by RefMI. if (PhysRegInfo[Reg] == RefMI && PhysRegInfo[Reg]->readsRegister(Reg)) { return true; } } else if (SubKills.empty()) { // None of the sub-registers are killed elsewhere. return true; } return false; } /// HandlePhysRegKill - Returns true if the whole register is killed in the /// machine instruction. If only some of its sub-registers are killed in this /// machine instruction, then mark those as killed and return false. bool LiveVariables::HandlePhysRegKill(unsigned Reg, MachineInstr *RefMI) { SmallSet SubKills; if (HandlePhysRegKill(Reg, RefMI, SubKills)) { // This machine instruction kills this register. RefMI->addRegisterKilled(Reg, TRI, true); return true; } // Some sub-registers are killed by another machine instruction. for (const unsigned *SubRegs = TRI->getImmediateSubRegisters(Reg); unsigned SubReg = *SubRegs; ++SubRegs) addRegisterKills(SubReg, RefMI, SubKills); return false; } /// hasRegisterUseBelow - Return true if the specified register is used after /// the current instruction and before it's next definition. bool LiveVariables::hasRegisterUseBelow(unsigned Reg, MachineBasicBlock::iterator I, MachineBasicBlock *MBB) { if (I == MBB->end()) return false; // First find out if there are any uses / defs below. bool hasDistInfo = true; unsigned CurDist = DistanceMap[I]; SmallVector Uses; SmallVector Defs; for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(Reg), RE = MRI->reg_end(); RI != RE; ++RI) { MachineOperand &UDO = RI.getOperand(); MachineInstr *UDMI = &*RI; if (UDMI->getParent() != MBB) continue; DenseMap::iterator DI = DistanceMap.find(UDMI); bool isBelow = false; if (DI == DistanceMap.end()) { // Must be below if it hasn't been assigned a distance yet. isBelow = true; hasDistInfo = false; } else if (DI->second > CurDist) isBelow = true; if (isBelow) { if (UDO.isUse()) Uses.push_back(UDMI); if (UDO.isDef()) Defs.push_back(UDMI); } } if (Uses.empty()) // No uses below. return false; else if (!Uses.empty() && Defs.empty()) // There are uses below but no defs below. return true; // There are both uses and defs below. We need to know which comes first. if (!hasDistInfo) { // Complete DistanceMap for this MBB. This information is computed only // once per MBB. ++I; ++CurDist; for (MachineBasicBlock::iterator E = MBB->end(); I != E; ++I, ++CurDist) DistanceMap.insert(std::make_pair(I, CurDist)); } unsigned EarliestUse = CurDist; for (unsigned i = 0, e = Uses.size(); i != e; ++i) { unsigned Dist = DistanceMap[Uses[i]]; if (Dist < EarliestUse) EarliestUse = Dist; } for (unsigned i = 0, e = Defs.size(); i != e; ++i) { unsigned Dist = DistanceMap[Defs[i]]; if (Dist < EarliestUse) // The register is defined before its first use below. return false; } return true; } void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI) { // Does this kill a previous version of this register? if (MachineInstr *LastRef = PhysRegInfo[Reg]) { if (PhysRegUsed[Reg]) { if (!HandlePhysRegKill(Reg, LastRef)) { if (PhysRegPartUse[Reg]) PhysRegPartUse[Reg]->addRegisterKilled(Reg, TRI, true); } } else if (PhysRegPartUse[Reg]) { // Add implicit use / kill to last partial use. PhysRegPartUse[Reg]->addRegisterKilled(Reg, TRI, true); } else if (LastRef != MI) { // Defined, but not used. However, watch out for cases where a super-reg // is also defined on the same MI. LastRef->addRegisterDead(Reg, TRI); } } for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); unsigned SubReg = *SubRegs; ++SubRegs) { if (MachineInstr *LastRef = PhysRegInfo[SubReg]) { if (PhysRegUsed[SubReg]) { if (!HandlePhysRegKill(SubReg, LastRef)) { if (PhysRegPartUse[SubReg]) PhysRegPartUse[SubReg]->addRegisterKilled(SubReg, TRI, true); } } else if (PhysRegPartUse[SubReg]) { // Add implicit use / kill to last use of a sub-register. PhysRegPartUse[SubReg]->addRegisterKilled(SubReg, TRI, true); } else if (LastRef != MI) { // This must be a def of the subreg on the same MI. LastRef->addRegisterDead(SubReg, TRI); } } } if (MI) { for (const unsigned *SuperRegs = TRI->getSuperRegisters(Reg); unsigned SuperReg = *SuperRegs; ++SuperRegs) { if (PhysRegInfo[SuperReg] && PhysRegInfo[SuperReg] != MI) { // The larger register is previously defined. Now a smaller part is // being re-defined. Treat it as read/mod/write if there are uses // below. // EAX = // AX = EAX, EAX // ... /// = EAX if (MI && hasRegisterUseBelow(SuperReg, MI, MI->getParent())) { MI->addOperand(MachineOperand::CreateReg(SuperReg, false/*IsDef*/, true/*IsImp*/,true/*IsKill*/)); MI->addOperand(MachineOperand::CreateReg(SuperReg, true/*IsDef*/, true/*IsImp*/)); PhysRegInfo[SuperReg] = MI; } else { PhysRegInfo[SuperReg]->addRegisterKilled(SuperReg, TRI, true); PhysRegInfo[SuperReg] = NULL; } PhysRegUsed[SuperReg] = false; PhysRegPartUse[SuperReg] = NULL; } else { // Remember this partial def. PhysRegPartDef[SuperReg].push_back(MI); } } PhysRegInfo[Reg] = MI; PhysRegUsed[Reg] = false; PhysRegPartDef[Reg].clear(); PhysRegPartUse[Reg] = NULL; for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); unsigned SubReg = *SubRegs; ++SubRegs) { PhysRegInfo[SubReg] = MI; PhysRegUsed[SubReg] = false; PhysRegPartDef[SubReg].clear(); PhysRegPartUse[SubReg] = NULL; } } } bool LiveVariables::runOnMachineFunction(MachineFunction &mf) { MF = &mf; MRI = &mf.getRegInfo(); TRI = MF->getTarget().getRegisterInfo(); ReservedRegisters = TRI->getReservedRegs(mf); unsigned NumRegs = TRI->getNumRegs(); PhysRegInfo = new MachineInstr*[NumRegs]; PhysRegUsed = new bool[NumRegs]; PhysRegPartUse = new MachineInstr*[NumRegs]; PhysRegPartDef = new SmallVector[NumRegs]; PHIVarInfo = new SmallVector[MF->getNumBlockIDs()]; std::fill(PhysRegInfo, PhysRegInfo + NumRegs, (MachineInstr*)0); std::fill(PhysRegUsed, PhysRegUsed + NumRegs, false); std::fill(PhysRegPartUse, PhysRegPartUse + NumRegs, (MachineInstr*)0); /// Get some space for a respectable number of registers. VirtRegInfo.resize(64); analyzePHINodes(mf); // Calculate live variable information in depth first order on the CFG of the // function. This guarantees that we will see the definition of a virtual // register before its uses due to dominance properties of SSA (except for PHI // nodes, which are treated as a special case). MachineBasicBlock *Entry = MF->begin(); SmallPtrSet Visited; for (df_ext_iterator > DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited); DFI != E; ++DFI) { MachineBasicBlock *MBB = *DFI; // Mark live-in registers as live-in. for (MachineBasicBlock::const_livein_iterator II = MBB->livein_begin(), EE = MBB->livein_end(); II != EE; ++II) { assert(TargetRegisterInfo::isPhysicalRegister(*II) && "Cannot have a live-in virtual register!"); HandlePhysRegDef(*II, 0); } // Loop over all of the instructions, processing them. DistanceMap.clear(); unsigned Dist = 0; for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ++I) { MachineInstr *MI = I; DistanceMap.insert(std::make_pair(MI, Dist++)); // Process all of the operands of the instruction... unsigned NumOperandsToProcess = MI->getNumOperands(); // Unless it is a PHI node. In this case, ONLY process the DEF, not any // of the uses. They will be handled in other basic blocks. if (MI->getOpcode() == TargetInstrInfo::PHI) NumOperandsToProcess = 1; // Process all uses. for (unsigned i = 0; i != NumOperandsToProcess; ++i) { const MachineOperand &MO = MI->getOperand(i); if (MO.isRegister() && MO.isUse() && MO.getReg()) { unsigned MOReg = MO.getReg(); if (TargetRegisterInfo::isVirtualRegister(MOReg)) HandleVirtRegUse(MOReg, MBB, MI); else if (TargetRegisterInfo::isPhysicalRegister(MOReg) && !ReservedRegisters[MOReg]) HandlePhysRegUse(MOReg, MI); } } // Process all defs. for (unsigned i = 0; i != NumOperandsToProcess; ++i) { const MachineOperand &MO = MI->getOperand(i); if (MO.isRegister() && MO.isDef() && MO.getReg()) { unsigned MOReg = MO.getReg(); if (TargetRegisterInfo::isVirtualRegister(MOReg)) { VarInfo &VRInfo = getVarInfo(MOReg); if (VRInfo.AliveBlocks.none()) // If vr is not alive in any block, then defaults to dead. VRInfo.Kills.push_back(MI); } else if (TargetRegisterInfo::isPhysicalRegister(MOReg) && !ReservedRegisters[MOReg]) { HandlePhysRegDef(MOReg, MI); } } } } // Handle any virtual assignments from PHI nodes which might be at the // bottom of this basic block. We check all of our successor blocks to see // if they have PHI nodes, and if so, we simulate an assignment at the end // of the current block. if (!PHIVarInfo[MBB->getNumber()].empty()) { SmallVector& VarInfoVec = PHIVarInfo[MBB->getNumber()]; for (SmallVector::iterator I = VarInfoVec.begin(), E = VarInfoVec.end(); I != E; ++I) // Mark it alive only in the block we are representing. MarkVirtRegAliveInBlock(getVarInfo(*I),MRI->getVRegDef(*I)->getParent(), MBB); } // Finally, if the last instruction in the block is a return, make sure to // mark it as using all of the live-out values in the function. if (!MBB->empty() && MBB->back().getDesc().isReturn()) { MachineInstr *Ret = &MBB->back(); for (MachineRegisterInfo::liveout_iterator I = MF->getRegInfo().liveout_begin(), E = MF->getRegInfo().liveout_end(); I != E; ++I) { assert(TargetRegisterInfo::isPhysicalRegister(*I) && "Cannot have a live-in virtual register!"); HandlePhysRegUse(*I, Ret); // Add live-out registers as implicit uses. if (!Ret->readsRegister(*I)) Ret->addOperand(MachineOperand::CreateReg(*I, false, true)); } } // Loop over PhysRegInfo, killing any registers that are available at the // end of the basic block. This also resets the PhysRegInfo map. for (unsigned i = 0; i != NumRegs; ++i) if (PhysRegInfo[i]) HandlePhysRegDef(i, 0); // Clear some states between BB's. These are purely local information. for (unsigned i = 0; i != NumRegs; ++i) PhysRegPartDef[i].clear(); std::fill(PhysRegInfo, PhysRegInfo + NumRegs, (MachineInstr*)0); std::fill(PhysRegUsed, PhysRegUsed + NumRegs, false); std::fill(PhysRegPartUse, PhysRegPartUse + NumRegs, (MachineInstr*)0); } // Convert and transfer the dead / killed information we have gathered into // VirtRegInfo onto MI's. for (unsigned i = 0, e1 = VirtRegInfo.size(); i != e1; ++i) for (unsigned j = 0, e2 = VirtRegInfo[i].Kills.size(); j != e2; ++j) if (VirtRegInfo[i].Kills[j] == MRI->getVRegDef(i + TargetRegisterInfo::FirstVirtualRegister)) VirtRegInfo[i] .Kills[j]->addRegisterDead(i + TargetRegisterInfo::FirstVirtualRegister, TRI); else VirtRegInfo[i] .Kills[j]->addRegisterKilled(i + TargetRegisterInfo::FirstVirtualRegister, TRI); // Check to make sure there are no unreachable blocks in the MC CFG for the // function. If so, it is due to a bug in the instruction selector or some // other part of the code generator if this happens. #ifndef NDEBUG for(MachineFunction::iterator i = MF->begin(), e = MF->end(); i != e; ++i) assert(Visited.count(&*i) != 0 && "unreachable basic block found"); #endif delete[] PhysRegInfo; delete[] PhysRegUsed; delete[] PhysRegPartUse; delete[] PhysRegPartDef; delete[] PHIVarInfo; return false; } /// instructionChanged - When the address of an instruction changes, this method /// should be called so that live variables can update its internal data /// structures. This removes the records for OldMI, transfering them to the /// records for NewMI. void LiveVariables::instructionChanged(MachineInstr *OldMI, MachineInstr *NewMI) { // If the instruction defines any virtual registers, update the VarInfo, // kill and dead information for the instruction. for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) { MachineOperand &MO = OldMI->getOperand(i); if (MO.isRegister() && MO.getReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) { unsigned Reg = MO.getReg(); VarInfo &VI = getVarInfo(Reg); if (MO.isDef()) { if (MO.isDead()) { MO.setIsDead(false); addVirtualRegisterDead(Reg, NewMI); } } if (MO.isKill()) { MO.setIsKill(false); addVirtualRegisterKilled(Reg, NewMI); } // If this is a kill of the value, update the VI kills list. if (VI.removeKill(OldMI)) VI.Kills.push_back(NewMI); // Yes, there was a kill of it } } } /// removeVirtualRegistersKilled - Remove all killed info for the specified /// instruction. void LiveVariables::removeVirtualRegistersKilled(MachineInstr *MI) { for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (MO.isRegister() && MO.isKill()) { MO.setIsKill(false); unsigned Reg = MO.getReg(); if (TargetRegisterInfo::isVirtualRegister(Reg)) { bool removed = getVarInfo(Reg).removeKill(MI); assert(removed && "kill not in register's VarInfo?"); } } } } /// removeVirtualRegistersDead - Remove all of the dead registers for the /// specified instruction from the live variable information. void LiveVariables::removeVirtualRegistersDead(MachineInstr *MI) { for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (MO.isRegister() && MO.isDead()) { MO.setIsDead(false); unsigned Reg = MO.getReg(); if (TargetRegisterInfo::isVirtualRegister(Reg)) { bool removed = getVarInfo(Reg).removeKill(MI); assert(removed && "kill not in register's VarInfo?"); } } } } /// analyzePHINodes - Gather information about the PHI nodes in here. In /// particular, we want to map the variable information of a virtual register /// which is used in a PHI node. We map that to the BB the vreg is coming from. /// void LiveVariables::analyzePHINodes(const MachineFunction& Fn) { for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end(); BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI) for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) PHIVarInfo[BBI->getOperand(i + 1).getMBB()->getNumber()] .push_back(BBI->getOperand(i).getReg()); }