//===- llvm/Analysis/TargetTransformInfo.h ----------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass exposes codegen information to IR-level passes. Every // transformation that uses codegen information is broken into three parts: // 1. The IR-level analysis pass. // 2. The IR-level transformation interface which provides the needed // information. // 3. Codegen-level implementation which uses target-specific hooks. // // This file defines #2, which is the interface that IR-level transformations // use for querying the codegen. // //===----------------------------------------------------------------------===// #ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFO_H #define LLVM_ANALYSIS_TARGETTRANSFORMINFO_H #include "llvm/CodeGen/ValueTypes.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/Type.h" #include "llvm/Pass.h" #include "llvm/Support/DataTypes.h" namespace llvm { /// TargetTransformInfo - This pass provides access to the codegen /// interfaces that are needed for IR-level transformations. class TargetTransformInfo { protected: /// \brief The TTI instance one level down the stack. /// /// This is used to implement the default behavior all of the methods which /// is to delegate up through the stack of TTIs until one can answer the /// query. TargetTransformInfo *PrevTTI; /// \brief The top of the stack of TTI analyses available. /// /// This is a convenience routine maintained as TTI analyses become available /// that complements the PrevTTI delegation chain. When one part of an /// analysis pass wants to query another part of the analysis pass it can use /// this to start back at the top of the stack. TargetTransformInfo *TopTTI; /// All pass subclasses must in their initializePass routine call /// pushTTIStack with themselves to update the pointers tracking the previous /// TTI instance in the analysis group's stack, and the top of the analysis /// group's stack. void pushTTIStack(Pass *P); /// All pass subclasses must in their finalizePass routine call popTTIStack /// to update the pointers tracking the previous TTI instance in the analysis /// group's stack, and the top of the analysis group's stack. void popTTIStack(); /// All pass subclasses must call TargetTransformInfo::getAnalysisUsage. virtual void getAnalysisUsage(AnalysisUsage &AU) const; public: /// This class is intended to be subclassed by real implementations. virtual ~TargetTransformInfo() = 0; /// \name Scalar Target Information /// @{ /// \brief Flags indicating the kind of support for population count. /// /// Compared to the SW implementation, HW support is supposed to /// significantly boost the performance when the population is dense, and it /// may or may not degrade performance if the population is sparse. A HW /// support is considered as "Fast" if it can outperform, or is on a par /// with, SW implementaion when the population is sparse; otherwise, it is /// considered as "Slow". enum PopcntSupportKind { PSK_Software, PSK_SlowHardware, PSK_FastHardware }; /// isLegalAddImmediate - Return true if the specified immediate is legal /// add immediate, that is the target has add instructions which can add /// a register with the immediate without having to materialize the /// immediate into a register. virtual bool isLegalAddImmediate(int64_t Imm) const; /// isLegalICmpImmediate - Return true if the specified immediate is legal /// icmp immediate, that is the target has icmp instructions which can compare /// a register against the immediate without having to materialize the /// immediate into a register. virtual bool isLegalICmpImmediate(int64_t Imm) const; /// isLegalAddressingMode - Return true if the addressing mode represented by /// AM is legal for this target, for a load/store of the specified type. /// The type may be VoidTy, in which case only return true if the addressing /// mode is legal for a load/store of any legal type. /// TODO: Handle pre/postinc as well. virtual bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg, int64_t Scale) const; /// isTruncateFree - Return true if it's free to truncate a value of /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in /// register EAX to i16 by referencing its sub-register AX. virtual bool isTruncateFree(Type *Ty1, Type *Ty2) const; /// Is this type legal. virtual bool isTypeLegal(Type *Ty) const; /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes virtual unsigned getJumpBufAlignment() const; /// getJumpBufSize - returns the target's jmp_buf size in bytes. virtual unsigned getJumpBufSize() const; /// shouldBuildLookupTables - Return true if switches should be turned into /// lookup tables for the target. virtual bool shouldBuildLookupTables() const; /// getPopcntSupport - Return hardware support for population count. virtual PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const; /// getIntImmCost - Return the expected cost of materializing the given /// integer immediate of the specified type. virtual unsigned getIntImmCost(const APInt &Imm, Type *Ty) const; /// @} /// \name Vector Target Information /// @{ /// \brief The various kinds of shuffle patterns for vector queries. enum ShuffleKind { SK_Broadcast, ///< Broadcast element 0 to all other elements. SK_Reverse, ///< Reverse the order of the vector. SK_InsertSubvector, ///< InsertSubvector. Index indicates start offset. SK_ExtractSubvector ///< ExtractSubvector Index indicates start offset. }; /// \return The number of scalar or vector registers that the target has. /// If 'Vectors' is true, it returns the number of vector registers. If it is /// set to false, it returns the number of scalar registers. virtual unsigned getNumberOfRegisters(bool Vector) const; /// \return The width of the largest scalar or vector register type. virtual unsigned getRegisterBitWidth(bool Vector) const; /// \return The maximum unroll factor that the vectorizer should try to /// perform for this target. This number depends on the level of parallelism /// and the number of execution units in the CPU. virtual unsigned getMaximumUnrollFactor() const; /// \return The expected cost of arithmetic ops, such as mul, xor, fsub, etc. virtual unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty) const; /// \return The cost of a shuffle instruction of kind Kind and of type Tp. /// The index and subtype parameters are used by the subvector insertion and /// extraction shuffle kinds. virtual unsigned getShuffleCost(ShuffleKind Kind, Type *Tp, int Index = 0, Type *SubTp = 0) const; /// \return The expected cost of cast instructions, such as bitcast, trunc, /// zext, etc. virtual unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) const; /// \return The expected cost of control-flow related instrutctions such as /// Phi, Ret, Br. virtual unsigned getCFInstrCost(unsigned Opcode) const; /// \returns The expected cost of compare and select instructions. virtual unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy = 0) const; /// \return The expected cost of vector Insert and Extract. /// Use -1 to indicate that there is no information on the index value. virtual unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index = -1) const; /// \return The cost of Load and Store instructions. virtual unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, unsigned AddressSpace) const; /// \returns The cost of Intrinsic instructions. virtual unsigned getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, ArrayRef Tys) const; /// \returns The number of pieces into which the provided type must be /// split during legalization. Zero is returned when the answer is unknown. virtual unsigned getNumberOfParts(Type *Tp) const; /// @} /// Analysis group identification. static char ID; }; /// \brief Create the base case instance of a pass in the TTI analysis group. /// /// This class provides the base case for the stack of TTI analyses. It doesn't /// delegate to anything and uses the STTI and VTTI objects passed in to /// satisfy the queries. ImmutablePass *createNoTargetTransformInfoPass(); } // End llvm namespace #endif