//===- MipsInstrInfo.td - Mips Register defs --------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by Bruno Cardoso Lopes and is distributed under the // University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Instruction format superclass //===----------------------------------------------------------------------===// include "MipsInstrFormats.td" //===----------------------------------------------------------------------===// // Mips profiles and nodes //===----------------------------------------------------------------------===// // Call def SDT_MipsJmpLink : SDTypeProfile<0, 1, [SDTCisVT<0, iPTR>]>; def MipsJmpLink : SDNode<"MipsISD::JmpLink",SDT_MipsJmpLink, [SDNPHasChain, SDNPOutFlag]>; // Hi and Lo nodes are created to let easy manipulation of 16-bit when // handling 32-bit immediates. They are used on MipsISelLowering to // lower stuff like GlobalAddress, ExternalSymbol, ... // This two nodes have nothing to do with Mips Registers Hi and Lo. def MipsHi : SDNode<"MipsISD::Hi", SDTIntUnaryOp>; def MipsLo : SDNode<"MipsISD::Lo", SDTIntUnaryOp>; // Return def SDT_MipsRet : SDTypeProfile<0, 1, [SDTCisInt<0>]>; def MipsRet : SDNode<"MipsISD::Ret", SDT_MipsRet, [SDNPHasChain, SDNPOptInFlag]>; // These are target-independent nodes, but have target-specific formats. def SDT_MipsCallSeq : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>; def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_MipsCallSeq, [SDNPHasChain, SDNPOutFlag]>; def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_MipsCallSeq, [SDNPHasChain, SDNPOutFlag]>; // Instruction operand types def brtarget : Operand; def calltarget : Operand; def uimm16 : Operand; def simm16 : Operand; def shamt : Operand; // Address operand def mem : Operand { let PrintMethod = "printMemOperand"; let MIOperandInfo = (ops simm16, CPURegs); } //===----------------------------------------------------------------------===// // Mips Patterns and Transformations //===----------------------------------------------------------------------===// // Transformation Function - get the lower 16 bits. def LO16 : SDNodeXFormgetValue() & 0xFFFF); }]>; // Transformation Function - get the higher 16 bits. def HI16 : SDNodeXFormgetValue() >> 16); }]>; // Node immediate fits as 16-bit sign extended on target immediate. // e.g. addi, andi def immSExt16 : PatLeaf<(imm), [{ if (N->getValueType(0) == MVT::i32) return (int32_t)N->getValue() == (short)N->getValue(); else return (int64_t)N->getValue() == (short)N->getValue(); }]>; // Node immediate fits as 16-bit zero extended on target immediate. // The LO16 param means that only the lower 16 bits of the node // immediate are caught. // e.g. addiu, sltiu def immZExt16 : PatLeaf<(imm), [{ if (N->getValueType(0) == MVT::i32) return (uint32_t)N->getValue() == (unsigned short)N->getValue(); else return (uint64_t)N->getValue() == (unsigned short)N->getValue(); }], LO16>; // shamt field must fit in 5 bits. def immZExt5 : PatLeaf<(imm), [{ return N->getValue() == ((N->getValue()) & 0x1f) ; }]>; // Mips Address Mode! SDNode frameindex could possibily be a match // since load and store instructions from stack used it. def addr : ComplexPattern; //===----------------------------------------------------------------------===// // Instructions specific format //===----------------------------------------------------------------------===// // Arithmetic 3 register operands let isCommutable = 1 in class ArithR< bits<6> op, bits<6> func, string instr_asm, SDNode OpNode>: FR< op, func, (outs CPURegs:$dst), (ins CPURegs:$b, CPURegs:$c), !strconcat(instr_asm, " $dst, $b, $c"), [(set CPURegs:$dst, (OpNode CPURegs:$b, CPURegs:$c))] >; let isCommutable = 1 in class ArithOverflowR< bits<6> op, bits<6> func, string instr_asm>: FR< op, func, (outs CPURegs:$dst), (ins CPURegs:$b, CPURegs:$c), !strconcat(instr_asm, " $dst, $b, $c"), []>; // Arithmetic 2 register operands let isCommutable = 1 in class ArithI op, string instr_asm, SDNode OpNode, Operand Od, PatLeaf imm_type> : FI< op, (outs CPURegs:$dst), (ins CPURegs:$b, Od:$c), !strconcat(instr_asm, " $dst, $b, $c"), [(set CPURegs:$dst, (OpNode CPURegs:$b, imm_type:$c))] >; // Arithmetic Multiply ADD/SUB let rd=0 in class MArithR func, string instr_asm> : FR< 0x1c, func, (outs CPURegs:$rs), (ins CPURegs:$rt), !strconcat(instr_asm, " $rs, $rt"), []>; // Logical class LogicR func, string instr_asm, SDNode OpNode>: FR< 0x00, func, (outs CPURegs:$dst), (ins CPURegs:$b, CPURegs:$c), !strconcat(instr_asm, " $dst, $b, $c"), [(set CPURegs:$dst, (OpNode CPURegs:$b, CPURegs:$c))] >; class LogicI op, string instr_asm, SDNode OpNode>: FI< op, (outs CPURegs:$dst), (ins CPURegs:$b, uimm16:$c), !strconcat(instr_asm, " $dst, $b, $c"), [(set CPURegs:$dst, (OpNode CPURegs:$b, immSExt16:$c))]>; class LogicNOR op, bits<6> func, string instr_asm>: FR< op, func, (outs CPURegs:$dst), (ins CPURegs:$b, CPURegs:$c), !strconcat(instr_asm, " $dst, $b, $c"), [(set CPURegs:$dst, (not (or CPURegs:$b, CPURegs:$c)))] >; // Shifts let rt = 0 in class LogicR_shift_imm func, string instr_asm, SDNode OpNode>: FR< 0x00, func, (outs CPURegs:$dst), (ins CPURegs:$b, shamt:$c), !strconcat(instr_asm, " $dst, $b, $c"), [(set CPURegs:$dst, (OpNode CPURegs:$b, immZExt5:$c))] >; class LogicR_shift_reg func, string instr_asm, SDNode OpNode>: FR< 0x00, func, (outs CPURegs:$dst), (ins CPURegs:$b, CPURegs:$c), !strconcat(instr_asm, " $dst, $b, $c"), [(set CPURegs:$dst, (OpNode CPURegs:$b, CPURegs:$c))] >; // Load Upper Imediate class LoadUpper op, string instr_asm>: FI< op, (outs CPURegs:$dst), (ins uimm16:$imm), !strconcat(instr_asm, " $dst, $imm"), []>; // Memory Load/Store let isLoad = 1 in class LoadM op, string instr_asm, PatFrag OpNode>: FI< op, (outs CPURegs:$dst), (ins mem:$addr), !strconcat(instr_asm, " $dst, $addr"), [(set CPURegs:$dst, (OpNode addr:$addr))]>; let isStore = 1 in class StoreM op, string instr_asm, PatFrag OpNode>: FI< op, (outs), (ins CPURegs:$dst, mem:$addr), !strconcat(instr_asm, " $dst, $addr"), [(OpNode CPURegs:$dst, addr:$addr)]>; // Conditional Branch let isBranch = 1, isTerminator=1 in class CBranch op, string instr_asm, PatFrag cond_op>: FI< op, (outs), (ins CPURegs:$a, CPURegs:$b, brtarget:$offset), !strconcat(instr_asm, " $a, $b, $offset"), [(brcond (cond_op CPURegs:$a, CPURegs:$b), bb:$offset)]>; class SetCC_R op, bits<6> func, string instr_asm, PatFrag cond_op>: FR< op, func, (outs CPURegs:$dst), (ins CPURegs:$b, CPURegs:$c), !strconcat(instr_asm, " $dst, $b, $c"), [(set CPURegs:$dst, (cond_op CPURegs:$b, CPURegs:$c))]>; class SetCC_I op, string instr_asm, PatFrag cond_op, Operand Od, PatLeaf imm_type>: FI< op, (outs CPURegs:$dst), (ins CPURegs:$b, Od:$c), !strconcat(instr_asm, " $dst, $b, $c"), [(set CPURegs:$dst, (cond_op CPURegs:$b, imm_type:$c))]>; // Unconditional branch let hasCtrlDep=1, isTerminator=1 in class JumpFJ op, string instr_asm>: FJ< op, (outs), (ins brtarget:$target), !strconcat(instr_asm, " $target"), [(br bb:$target)]>; let hasCtrlDep=1, isTerminator=1, rd=0 in class JumpFR op, bits<6> func, string instr_asm>: FR< op, func, (outs), (ins CPURegs:$target), !strconcat(instr_asm, " $target"), []>; // Jump and Link (Call) let isCall=1 in class JumpLink op, string instr_asm>: FJ< op, (outs), (ins calltarget:$target), !strconcat(instr_asm, " $target"), [(MipsJmpLink imm:$target)]>; let isCall=1 in class JumpLinkReg op, bits<6> func, string instr_asm>: FR< op, func, (outs), (ins CPURegs:$rd, CPURegs:$rs), !strconcat(instr_asm, " $rs, $rd"), []>; // Mul, Div class MulDiv func, string instr_asm>: FR< 0x00, func, (outs), (ins CPURegs:$a, CPURegs:$b), !strconcat(instr_asm, " $a, $b"), []>; // Move from Hi/Lo class MoveFromTo func, string instr_asm>: FR< 0x00, func, (outs CPURegs:$dst), (ins), !strconcat(instr_asm, " $dst"), []>; // Count Leading Ones/Zeros in Word class CountLeading func, string instr_asm>: FR< 0x1c, func, (outs CPURegs:$dst), (ins CPURegs:$src), !strconcat(instr_asm, " $dst, $src"), []>; //===----------------------------------------------------------------------===// // Pseudo instructions //===----------------------------------------------------------------------===// class Pseudo pattern>: MipsInst; // As stack alignment is always done with addiu, we need a 16-bit immediate def ADJCALLSTACKDOWN : Pseudo<(outs), (ins uimm16:$amt), "!ADJCALLSTACKDOWN $amt", [(callseq_start imm:$amt)]>, Imp<[SP],[SP]>; def ADJCALLSTACKUP : Pseudo<(outs), (ins uimm16:$amt), "!ADJCALLSTACKUP $amt", [(callseq_end imm:$amt)]>, Imp<[SP],[SP]>; def IMPLICIT_DEF_CPURegs : Pseudo<(outs CPURegs:$dst), (ins), "!IMPLICIT_DEF $dst", [(set CPURegs:$dst, (undef))]>; //===----------------------------------------------------------------------===// // Instruction definition //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Mips32 I //===----------------------------------------------------------------------===// // Arithmetic def ADDiu : ArithI<0x09, "addiu", add, uimm16, immSExt16>; def ADDi : ArithI<0x08, "addi", add, simm16, immZExt16>; def MUL : ArithR<0x1c, 0x02, "mul", mul>; def ADDu : ArithR<0x00, 0x21, "addu", add>; def SUBu : ArithR<0x00, 0x23, "subu", sub>; def ADD : ArithOverflowR<0x00, 0x20, "add">; def SUB : ArithOverflowR<0x00, 0x22, "sub">; def MADD : MArithR<0x00, "madd">; def MADDU : MArithR<0x01, "maddu">; def MSUB : MArithR<0x04, "msub">; def MSUBU : MArithR<0x05, "msubu">; // Logical def AND : LogicR<0x24, "and", and>; def OR : LogicR<0x25, "or", or>; def XOR : LogicR<0x26, "xor", xor>; def ANDi : LogicI<0x0c, "andi", and>; def ORi : LogicI<0x0d, "ori", or>; def XORi : LogicI<0x0e, "xori", xor>; def NOR : LogicNOR<0x00, 0x27, "nor">; // Shifts def SLL : LogicR_shift_imm<0x00, "sll", shl>; def SRL : LogicR_shift_imm<0x02, "srl", srl>; def SRA : LogicR_shift_imm<0x03, "sra", sra>; def SLLV : LogicR_shift_reg<0x04, "sllv", shl>; def SRLV : LogicR_shift_reg<0x06, "srlv", srl>; def SRAV : LogicR_shift_reg<0x07, "srav", sra>; // Load Upper Immediate def LUi : LoadUpper<0x0f, "lui">; // Load/Store def LB : LoadM<0x20, "lb", sextloadi8>; def LBu : LoadM<0x24, "lbu", zextloadi8>; def LH : LoadM<0x21, "lh", sextloadi16>; def LHu : LoadM<0x25, "lhu", zextloadi16>; def LW : LoadM<0x23, "lw", load>; def SB : StoreM<0x28, "sb", truncstorei8>; def SH : StoreM<0x29, "sh", truncstorei16>; def SW : StoreM<0x2b, "sw", store>; // Conditional Branch def BEQ : CBranch<0x04, "beq", seteq>; def BNE : CBranch<0x05, "bne", setne>; def SLT : SetCC_R<0x00, 0x2a, "slt", setlt>; def SLTu : SetCC_R<0x00, 0x2b, "sltu", setult>; def SLTi : SetCC_I<0x0a, "slti", setlt, simm16, immSExt16>; def SLTiu : SetCC_I<0x0b, "sltiu", setult, uimm16, immZExt16>; // Unconditional jump def J : JumpFJ<0x02, "j">; def JR : JumpFR<0x00, 0x08, "jr">; // Jump and Link (Call) def JAL : JumpLink<0x03, "jal">; def JALR : JumpLinkReg<0x00, 0x09, "jalr">; // MulDiv and Move From Hi/Lo operations, have // their correpondent SDNodes created on ISelDAG. // Special Mul, Div operations def MULT : MulDiv<0x18, "mult">; def MULTu : MulDiv<0x19, "multu">; def DIV : MulDiv<0x1a, "div">; def DIVu : MulDiv<0x1b, "divu">; // Move From Hi/Lo def MFHI : MoveFromTo<0x10, "mfhi">; def MFLO : MoveFromTo<0x12, "mflo">; def MTHI : MoveFromTo<0x11, "mthi">; def MTLO : MoveFromTo<0x13, "mtlo">; // Count Leading def CLO : CountLeading<0x21, "clo">; def CLZ : CountLeading<0x20, "clz">; // No operation let addr=0 in def NOOP : FJ<0, (outs), (ins), "nop", []>; // Ret instruction - as mips does not have "ret" a // jr $ra must be generated. let isReturn=1, isTerminator=1, hasDelaySlot=1, isBarrier=1, hasCtrlDep=1, rs=0, rt=0, shamt=0 in { def RET : FR <0x00, 0x02, (outs), (ins CPURegs:$target), "jr $target", [(MipsRet CPURegs:$target)]>; } //===----------------------------------------------------------------------===// // Arbitrary patterns that map to one or more instructions //===----------------------------------------------------------------------===// // Small immediates def : Pat<(i32 immSExt16:$in), (ADDiu ZERO, imm:$in)>; def : Pat<(i32 immZExt16:$in), (ORi ZERO, imm:$in)>; // Arbitrary immediates def : Pat<(i32 imm:$imm), (ORi (LUi (HI16 imm:$imm)), (LO16 imm:$imm))>; // Call def : Pat<(MipsJmpLink (i32 tglobaladdr:$dst)), (JAL tglobaladdr:$dst)>; def : Pat<(MipsJmpLink (i32 texternalsym:$dst)), (JAL texternalsym:$dst)>; // GlobalAddress, Constant Pool, ExternalSymbol, and JumpTable def : Pat<(MipsHi tglobaladdr:$in), (LUi tglobaladdr:$in)>; def : Pat<(MipsLo tglobaladdr:$in), (ADDiu ZERO, tglobaladdr:$in)>; // When extracting the address from GlobalAddress we // need something of the form "addiu $reg, %lo(addr)" def : Pat<(add CPURegs:$a, (MipsLo tglobaladdr:$in)), (ADDiu CPURegs:$a, tglobaladdr:$in)>; // Mips does not have not, so we increase the operation def : Pat<(not CPURegs:$in), (NOR CPURegs:$in, CPURegs:$in)>; // extended load and stores def : Pat<(i32 (extloadi8 addr:$src)), (LBu addr:$src)>; def : Pat<(i32 (extloadi16 addr:$src)), (LHu addr:$src)>; def : Pat<(truncstorei1 CPURegs:$src, addr:$addr), (SB CPURegs:$src, addr:$src)>; def : Pat<(brcond (setne CPURegs:$lhs, (add ZERO, 0)), bb:$dst), (BNE CPURegs:$lhs, ZERO, bb:$dst)>; // Conditional branch patterns. // cond branches patterns, 2 register operands signed. def : Pat<(brcond (setlt CPURegs:$lhs, CPURegs:$rhs), bb:$dst), (BNE (SLT CPURegs:$lhs, CPURegs:$rhs), ZERO, bb:$dst)>; def : Pat<(brcond (setle CPURegs:$lhs, CPURegs:$rhs), bb:$dst), (BEQ (SLT CPURegs:$rhs, CPURegs:$lhs), ZERO, bb:$dst)>; def : Pat<(brcond (setgt CPURegs:$lhs, CPURegs:$rhs), bb:$dst), (BNE (SLT CPURegs:$rhs, CPURegs:$lhs), ZERO, bb:$dst)>; def : Pat<(brcond (setge CPURegs:$lhs, CPURegs:$rhs), bb:$dst), (BEQ (SLT CPURegs:$lhs, CPURegs:$rhs), ZERO, bb:$dst)>; // cond branches patterns, 2 register operands unsigned. def : Pat<(brcond (setult CPURegs:$lhs, CPURegs:$rhs), bb:$dst), (BNE (SLTu CPURegs:$lhs, CPURegs:$rhs), ZERO, bb:$dst)>; def : Pat<(brcond (setule CPURegs:$lhs, CPURegs:$rhs), bb:$dst), (BEQ (SLTu CPURegs:$rhs, CPURegs:$lhs), ZERO, bb:$dst)>; def : Pat<(brcond (setugt CPURegs:$lhs, CPURegs:$rhs), bb:$dst), (BNE (SLTu CPURegs:$rhs, CPURegs:$lhs), ZERO, bb:$dst)>; def : Pat<(brcond (setuge CPURegs:$lhs, CPURegs:$rhs), bb:$dst), (BEQ (SLTu CPURegs:$lhs, CPURegs:$rhs), ZERO, bb:$dst)>; // cond branches patterns, reg/imm operands signed. def : Pat<(brcond (setult CPURegs:$lhs, immSExt16:$rhs), bb:$dst), (BNE (SLTi CPURegs:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>; def : Pat<(brcond (setuge CPURegs:$lhs, immSExt16:$rhs), bb:$dst), (BEQ (SLTi CPURegs:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>; // cond branches patterns, reg/imm operands unsigned. def : Pat<(brcond (setult CPURegs:$lhs, immZExt16:$rhs), bb:$dst), (BNE (SLTiu CPURegs:$lhs, immZExt16:$rhs), ZERO, bb:$dst)>; def : Pat<(brcond (setuge CPURegs:$lhs, immZExt16:$rhs), bb:$dst), (BEQ (SLTiu CPURegs:$lhs, immZExt16:$rhs), ZERO, bb:$dst)>;