//===- Pass.cpp - LLVM Pass Infrastructure Impementation ------------------===// // // This file implements the LLVM Pass infrastructure. It is primarily // responsible with ensuring that passes are executed and batched together // optimally. // //===----------------------------------------------------------------------===// #include "llvm/PassManager.h" #include "PassManagerT.h" // PassManagerT implementation #include "llvm/Module.h" #include "Support/STLExtras.h" #include "Support/TypeInfo.h" #include #include #include #include //===----------------------------------------------------------------------===// // AnalysisID Class Implementation // static std::vector CFGOnlyAnalyses; void RegisterPassBase::setPreservesCFG() { CFGOnlyAnalyses.push_back(PIObj); } //===----------------------------------------------------------------------===// // AnalysisResolver Class Implementation // void AnalysisResolver::setAnalysisResolver(Pass *P, AnalysisResolver *AR) { assert(P->Resolver == 0 && "Pass already in a PassManager!"); P->Resolver = AR; } //===----------------------------------------------------------------------===// // AnalysisUsage Class Implementation // // preservesCFG - This function should be called to by the pass, iff they do // not: // // 1. Add or remove basic blocks from the function // 2. Modify terminator instructions in any way. // // This function annotates the AnalysisUsage info object to say that analyses // that only depend on the CFG are preserved by this pass. // void AnalysisUsage::preservesCFG() { // Since this transformation doesn't modify the CFG, it preserves all analyses // that only depend on the CFG (like dominators, loop info, etc...) // Preserved.insert(Preserved.end(), CFGOnlyAnalyses.begin(), CFGOnlyAnalyses.end()); } //===----------------------------------------------------------------------===// // PassManager implementation - The PassManager class is a simple Pimpl class // that wraps the PassManagerT template. // PassManager::PassManager() : PM(new PassManagerT()) {} PassManager::~PassManager() { delete PM; } void PassManager::add(Pass *P) { PM->add(P); } bool PassManager::run(Module &M) { return PM->run(M); } //===----------------------------------------------------------------------===// // TimingInfo Class - This class is used to calculate information about the // amount of time each pass takes to execute. This only happens with // -time-passes is enabled on the command line. // static cl::opt EnableTiming("time-passes", cl::desc("Time each pass, printing elapsed time for each on exit")); static TimeRecord getTimeRecord() { static unsigned long PageSize = 0; if (PageSize == 0) { #ifdef _SC_PAGE_SIZE PageSize = sysconf(_SC_PAGE_SIZE); #else #ifdef _SC_PAGESIZE PageSize = sysconf(_SC_PAGESIZE); #else PageSize = getpagesize(); #endif #endif } struct rusage RU; struct timeval T; gettimeofday(&T, 0); if (getrusage(RUSAGE_SELF, &RU)) { perror("getrusage call failed: -time-passes info incorrect!"); } TimeRecord Result; Result.Elapsed = T.tv_sec + T.tv_usec/1000000.0; Result.UserTime = RU.ru_utime.tv_sec + RU.ru_utime.tv_usec/1000000.0; Result.SystemTime = RU.ru_stime.tv_sec + RU.ru_stime.tv_usec/1000000.0; Result.MaxRSS = RU.ru_maxrss*PageSize; return Result; } void TimeRecord::passStart(const TimeRecord &T) { Elapsed -= T.Elapsed; UserTime -= T.UserTime; SystemTime -= T.SystemTime; RSSTemp = T.MaxRSS; } void TimeRecord::passEnd(const TimeRecord &T) { Elapsed += T.Elapsed; UserTime += T.UserTime; SystemTime += T.SystemTime; RSSTemp = T.MaxRSS - RSSTemp; MaxRSS = std::max(MaxRSS, RSSTemp); } static void printVal(double Val, double Total) { if (Total < 1e-7) // Avoid dividing by zero... fprintf(stderr, " ----- "); else fprintf(stderr, " %7.4f (%5.1f%%)", Val, Val*100/Total); } void TimeRecord::print(const char *PassName, const TimeRecord &Total) const { printVal(UserTime, Total.UserTime); printVal(SystemTime, Total.SystemTime); printVal(UserTime+SystemTime, Total.UserTime+Total.SystemTime); printVal(Elapsed, Total.Elapsed); fprintf(stderr, " "); if (Total.MaxRSS) std::cerr << MaxRSS << "\t"; std::cerr << PassName << "\n"; } // Create method. If Timing is enabled, this creates and returns a new timing // object, otherwise it returns null. // TimingInfo *TimingInfo::create() { return EnableTiming ? new TimingInfo() : 0; } void TimingInfo::passStarted(Pass *P) { TimingData[P].passStart(getTimeRecord()); } void TimingInfo::passEnded(Pass *P) { TimingData[P].passEnd(getTimeRecord()); } void TimeRecord::sum(const TimeRecord &TR) { Elapsed += TR.Elapsed; UserTime += TR.UserTime; SystemTime += TR.SystemTime; MaxRSS += TR.MaxRSS; } // TimingDtor - Print out information about timing information TimingInfo::~TimingInfo() { // Iterate over all of the data, converting it into the dual of the data map, // so that the data is sorted by amount of time taken, instead of pointer. // std::vector > Data; TimeRecord Total; for (std::map::iterator I = TimingData.begin(), E = TimingData.end(); I != E; ++I) // Throw out results for "grouping" pass managers... if (!dynamic_cast(I->first)) { Data.push_back(std::make_pair(I->second, I->first)); Total.sum(I->second); } // Sort the data by time as the primary key, in reverse order... std::sort(Data.begin(), Data.end(), std::greater >()); // Print out timing header... std::cerr << std::string(79, '=') << "\n" << " ... Pass execution timing report ...\n" << std::string(79, '=') << "\n Total Execution Time: " << (Total.UserTime+Total.SystemTime) << " seconds (" << Total.Elapsed << " wall clock)\n\n ---User Time--- " << "--System Time-- --User+System-- ---Wall Time---"; if (Total.MaxRSS) std::cerr << " ---Mem---"; std::cerr << " --- Pass Name ---\n"; // Loop through all of the timing data, printing it out... for (unsigned i = 0, e = Data.size(); i != e; ++i) Data[i].first.print(Data[i].second->getPassName(), Total); Total.print("TOTAL", Total); } void PMDebug::PrintArgumentInformation(const Pass *P) { // Print out passes in pass manager... if (const AnalysisResolver *PM = dynamic_cast(P)) { for (unsigned i = 0, e = PM->getNumContainedPasses(); i != e; ++i) PrintArgumentInformation(PM->getContainedPass(i)); } else { // Normal pass. Print argument information... // Print out arguments for registered passes that are _optimizations_ if (const PassInfo *PI = P->getPassInfo()) if (PI->getPassType() & PassInfo::Optimization) std::cerr << " -" << PI->getPassArgument(); } } void PMDebug::PrintPassInformation(unsigned Depth, const char *Action, Pass *P, Annotable *V) { if (PassDebugging >= Executions) { std::cerr << (void*)P << std::string(Depth*2+1, ' ') << Action << " '" << P->getPassName(); if (V) { std::cerr << "' on "; if (dynamic_cast(V)) { std::cerr << "Module\n"; return; } else if (Function *F = dynamic_cast(V)) std::cerr << "Function '" << F->getName(); else if (BasicBlock *BB = dynamic_cast(V)) std::cerr << "BasicBlock '" << BB->getName(); else if (Value *Val = dynamic_cast(V)) std::cerr << typeid(*Val).name() << " '" << Val->getName(); } std::cerr << "'...\n"; } } void PMDebug::PrintAnalysisSetInfo(unsigned Depth, const char *Msg, Pass *P, const std::vector &Set){ if (PassDebugging >= Details && !Set.empty()) { std::cerr << (void*)P << std::string(Depth*2+3, ' ') << Msg << " Analyses:"; for (unsigned i = 0; i != Set.size(); ++i) std::cerr << " " << Set[i]->getPassName(); std::cerr << "\n"; } } //===----------------------------------------------------------------------===// // Pass Implementation // void Pass::addToPassManager(PassManagerT *PM, AnalysisUsage &AU) { PM->addPass(this, AU); } // dumpPassStructure - Implement the -debug-passes=Structure option void Pass::dumpPassStructure(unsigned Offset) { std::cerr << std::string(Offset*2, ' ') << getPassName() << "\n"; } // getPassName - Use C++ RTTI to get a SOMEWHAT intelligable name for the pass. // const char *Pass::getPassName() const { if (const PassInfo *PI = getPassInfo()) return PI->getPassName(); return typeid(*this).name(); } // print - Print out the internal state of the pass. This is called by Analyse // to print out the contents of an analysis. Otherwise it is not neccesary to // implement this method. // void Pass::print(std::ostream &O) const { O << "Pass::print not implemented for pass: '" << getPassName() << "'!\n"; } // dump - call print(std::cerr); void Pass::dump() const { print(std::cerr, 0); } //===----------------------------------------------------------------------===// // FunctionPass Implementation // // run - On a module, we run this pass by initializing, runOnFunction'ing once // for every function in the module, then by finalizing. // bool FunctionPass::run(Module &M) { bool Changed = doInitialization(M); for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) if (!I->isExternal()) // Passes are not run on external functions! Changed |= runOnFunction(*I); return Changed | doFinalization(M); } // run - On a function, we simply initialize, run the function, then finalize. // bool FunctionPass::run(Function &F) { if (F.isExternal()) return false;// Passes are not run on external functions! return doInitialization(*F.getParent()) | runOnFunction(F) | doFinalization(*F.getParent()); } void FunctionPass::addToPassManager(PassManagerT *PM, AnalysisUsage &AU) { PM->addPass(this, AU); } void FunctionPass::addToPassManager(PassManagerT *PM, AnalysisUsage &AU) { PM->addPass(this, AU); } //===----------------------------------------------------------------------===// // BasicBlockPass Implementation // // To run this pass on a function, we simply call runOnBasicBlock once for each // function. // bool BasicBlockPass::runOnFunction(Function &F) { bool Changed = false; for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) Changed |= runOnBasicBlock(*I); return Changed; } // To run directly on the basic block, we initialize, runOnBasicBlock, then // finalize. // bool BasicBlockPass::run(BasicBlock &BB) { Module &M = *BB.getParent()->getParent(); return doInitialization(M) | runOnBasicBlock(BB) | doFinalization(M); } void BasicBlockPass::addToPassManager(PassManagerT *PM, AnalysisUsage &AU) { PM->addPass(this, AU); } void BasicBlockPass::addToPassManager(PassManagerT *PM, AnalysisUsage &AU) { PM->addPass(this, AU); } //===----------------------------------------------------------------------===// // Pass Registration mechanism // static std::map *PassInfoMap = 0; static std::vector *Listeners = 0; // getPassInfo - Return the PassInfo data structure that corresponds to this // pass... const PassInfo *Pass::getPassInfo() const { if (PassInfoCache) return PassInfoCache; if (PassInfoMap == 0) return 0; std::map::iterator I = PassInfoMap->find(typeid(*this)); return (I != PassInfoMap->end()) ? I->second : 0; } void RegisterPassBase::registerPass(PassInfo *PI) { if (PassInfoMap == 0) PassInfoMap = new std::map(); assert(PassInfoMap->find(PI->getTypeInfo()) == PassInfoMap->end() && "Pass already registered!"); PIObj = PI; PassInfoMap->insert(std::make_pair(TypeInfo(PI->getTypeInfo()), PI)); // Notify any listeners... if (Listeners) for (std::vector::iterator I = Listeners->begin(), E = Listeners->end(); I != E; ++I) (*I)->passRegistered(PI); } RegisterPassBase::~RegisterPassBase() { assert(PassInfoMap && "Pass registered but not in map!"); std::map::iterator I = PassInfoMap->find(PIObj->getTypeInfo()); assert(I != PassInfoMap->end() && "Pass registered but not in map!"); // Remove pass from the map... PassInfoMap->erase(I); if (PassInfoMap->empty()) { delete PassInfoMap; PassInfoMap = 0; } // Notify any listeners... if (Listeners) for (std::vector::iterator I = Listeners->begin(), E = Listeners->end(); I != E; ++I) (*I)->passUnregistered(PIObj); // Delete the PassInfo object itself... delete PIObj; } //===----------------------------------------------------------------------===// // PassRegistrationListener implementation // // PassRegistrationListener ctor - Add the current object to the list of // PassRegistrationListeners... PassRegistrationListener::PassRegistrationListener() { if (!Listeners) Listeners = new std::vector(); Listeners->push_back(this); } // dtor - Remove object from list of listeners... PassRegistrationListener::~PassRegistrationListener() { std::vector::iterator I = std::find(Listeners->begin(), Listeners->end(), this); assert(Listeners && I != Listeners->end() && "PassRegistrationListener not registered!"); Listeners->erase(I); if (Listeners->empty()) { delete Listeners; Listeners = 0; } } // enumeratePasses - Iterate over the registered passes, calling the // passEnumerate callback on each PassInfo object. // void PassRegistrationListener::enumeratePasses() { if (PassInfoMap) for (std::map::iterator I = PassInfoMap->begin(), E = PassInfoMap->end(); I != E; ++I) passEnumerate(I->second); }