//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This implements the SelectionDAGISel class. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "isel" #include "llvm/CodeGen/SelectionDAGISel.h" #include "llvm/CallingConv.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/Instructions.h" #include "llvm/Intrinsics.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/SSARegMap.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetFrameInfo.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include #include using namespace llvm; #ifndef _NDEBUG static cl::opt ViewDAGs("view-isel-dags", cl::Hidden, cl::desc("Pop up a window to show isel dags as they are selected")); #else static const bool ViewDAGS = 0; #endif namespace llvm { //===--------------------------------------------------------------------===// /// FunctionLoweringInfo - This contains information that is global to a /// function that is used when lowering a region of the function. class FunctionLoweringInfo { public: TargetLowering &TLI; Function &Fn; MachineFunction &MF; SSARegMap *RegMap; FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF); /// MBBMap - A mapping from LLVM basic blocks to their machine code entry. std::map MBBMap; /// ValueMap - Since we emit code for the function a basic block at a time, /// we must remember which virtual registers hold the values for /// cross-basic-block values. std::map ValueMap; /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in /// the entry block. This allows the allocas to be efficiently referenced /// anywhere in the function. std::map StaticAllocaMap; /// BlockLocalArguments - If any arguments are only used in a single basic /// block, and if the target can access the arguments without side-effects, /// avoid emitting CopyToReg nodes for those arguments. This map keeps /// track of which arguments are local to each BB. std::multimap > BlockLocalArguments; unsigned MakeReg(MVT::ValueType VT) { return RegMap->createVirtualRegister(TLI.getRegClassFor(VT)); } unsigned CreateRegForValue(const Value *V) { MVT::ValueType VT = TLI.getValueType(V->getType()); // The common case is that we will only create one register for this // value. If we have that case, create and return the virtual register. unsigned NV = TLI.getNumElements(VT); if (NV == 1) { // If we are promoting this value, pick the next largest supported type. return MakeReg(TLI.getTypeToTransformTo(VT)); } // If this value is represented with multiple target registers, make sure // to create enough consequtive registers of the right (smaller) type. unsigned NT = VT-1; // Find the type to use. while (TLI.getNumElements((MVT::ValueType)NT) != 1) --NT; unsigned R = MakeReg((MVT::ValueType)NT); for (unsigned i = 1; i != NV; ++i) MakeReg((MVT::ValueType)NT); return R; } unsigned InitializeRegForValue(const Value *V) { unsigned &R = ValueMap[V]; assert(R == 0 && "Already initialized this value register!"); return R = CreateRegForValue(V); } }; } /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by /// PHI nodes or outside of the basic block that defines it. static bool isUsedOutsideOfDefiningBlock(Instruction *I) { if (isa(I)) return true; BasicBlock *BB = I->getParent(); for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI) if (cast(*UI)->getParent() != BB || isa(*UI)) return true; return false; } FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli, Function &fn, MachineFunction &mf) : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) { // Initialize the mapping of values to registers. This is only set up for // instruction values that are used outside of the block that defines // them. for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end(); AI != E; ++AI) InitializeRegForValue(AI); Function::iterator BB = Fn.begin(), E = Fn.end(); for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) if (AllocaInst *AI = dyn_cast(I)) if (ConstantUInt *CUI = dyn_cast(AI->getArraySize())) { const Type *Ty = AI->getAllocatedType(); uint64_t TySize = TLI.getTargetData().getTypeSize(Ty); unsigned Align = TLI.getTargetData().getTypeAlignment(Ty); // If the alignment of the value is smaller than the size of the value, // and if the size of the value is particularly small (<= 8 bytes), // round up to the size of the value for potentially better performance. // // FIXME: This could be made better with a preferred alignment hook in // TargetData. It serves primarily to 8-byte align doubles for X86. if (Align < TySize && TySize <= 8) Align = TySize; TySize *= CUI->getValue(); // Get total allocated size. StaticAllocaMap[AI] = MF.getFrameInfo()->CreateStackObject((unsigned)TySize, Align); } for (; BB != E; ++BB) for (BasicBlock::iterator I = BB->begin(), e = BB->end(); I != e; ++I) if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I)) if (!isa(I) || !StaticAllocaMap.count(cast(I))) InitializeRegForValue(I); // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This // also creates the initial PHI MachineInstrs, though none of the input // operands are populated. for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) { MachineBasicBlock *MBB = new MachineBasicBlock(BB); MBBMap[BB] = MBB; MF.getBasicBlockList().push_back(MBB); // Create Machine PHI nodes for LLVM PHI nodes, lowering them as // appropriate. PHINode *PN; for (BasicBlock::iterator I = BB->begin(); (PN = dyn_cast(I)); ++I) if (!PN->use_empty()) { unsigned NumElements = TLI.getNumElements(TLI.getValueType(PN->getType())); unsigned PHIReg = ValueMap[PN]; assert(PHIReg &&"PHI node does not have an assigned virtual register!"); for (unsigned i = 0; i != NumElements; ++i) BuildMI(MBB, TargetInstrInfo::PHI, PN->getNumOperands(), PHIReg+i); } } } //===----------------------------------------------------------------------===// /// SelectionDAGLowering - This is the common target-independent lowering /// implementation that is parameterized by a TargetLowering object. /// Also, targets can overload any lowering method. /// namespace llvm { class SelectionDAGLowering { MachineBasicBlock *CurMBB; std::map NodeMap; /// PendingLoads - Loads are not emitted to the program immediately. We bunch /// them up and then emit token factor nodes when possible. This allows us to /// get simple disambiguation between loads without worrying about alias /// analysis. std::vector PendingLoads; public: // TLI - This is information that describes the available target features we // need for lowering. This indicates when operations are unavailable, // implemented with a libcall, etc. TargetLowering &TLI; SelectionDAG &DAG; const TargetData &TD; /// FuncInfo - Information about the function as a whole. /// FunctionLoweringInfo &FuncInfo; SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli, FunctionLoweringInfo &funcinfo) : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()), FuncInfo(funcinfo) { } /// getRoot - Return the current virtual root of the Selection DAG. /// SDOperand getRoot() { if (PendingLoads.empty()) return DAG.getRoot(); if (PendingLoads.size() == 1) { SDOperand Root = PendingLoads[0]; DAG.setRoot(Root); PendingLoads.clear(); return Root; } // Otherwise, we have to make a token factor node. SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other, PendingLoads); PendingLoads.clear(); DAG.setRoot(Root); return Root; } void visit(Instruction &I) { visit(I.getOpcode(), I); } void visit(unsigned Opcode, User &I) { switch (Opcode) { default: assert(0 && "Unknown instruction type encountered!"); abort(); // Build the switch statement using the Instruction.def file. #define HANDLE_INST(NUM, OPCODE, CLASS) \ case Instruction::OPCODE:return visit##OPCODE((CLASS&)I); #include "llvm/Instruction.def" } } void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; } SDOperand getIntPtrConstant(uint64_t Val) { return DAG.getConstant(Val, TLI.getPointerTy()); } SDOperand getValue(const Value *V) { SDOperand &N = NodeMap[V]; if (N.Val) return N; MVT::ValueType VT = TLI.getValueType(V->getType()); if (Constant *C = const_cast(dyn_cast(V))) if (ConstantExpr *CE = dyn_cast(C)) { visit(CE->getOpcode(), *CE); assert(N.Val && "visit didn't populate the ValueMap!"); return N; } else if (GlobalValue *GV = dyn_cast(C)) { return N = DAG.getGlobalAddress(GV, VT); } else if (isa(C)) { return N = DAG.getConstant(0, TLI.getPointerTy()); } else if (isa(C)) { return N = DAG.getNode(ISD::UNDEF, VT); } else if (ConstantFP *CFP = dyn_cast(C)) { return N = DAG.getConstantFP(CFP->getValue(), VT); } else { // Canonicalize all constant ints to be unsigned. return N = DAG.getConstant(cast(C)->getRawValue(),VT); } if (const AllocaInst *AI = dyn_cast(V)) { std::map::iterator SI = FuncInfo.StaticAllocaMap.find(AI); if (SI != FuncInfo.StaticAllocaMap.end()) return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); } std::map::const_iterator VMI = FuncInfo.ValueMap.find(V); assert(VMI != FuncInfo.ValueMap.end() && "Value not in map!"); return N = DAG.getCopyFromReg(VMI->second, VT, DAG.getEntryNode()); } const SDOperand &setValue(const Value *V, SDOperand NewN) { SDOperand &N = NodeMap[V]; assert(N.Val == 0 && "Already set a value for this node!"); return N = NewN; } // Terminator instructions. void visitRet(ReturnInst &I); void visitBr(BranchInst &I); void visitUnreachable(UnreachableInst &I) { /* noop */ } // These all get lowered before this pass. void visitSwitch(SwitchInst &I) { assert(0 && "TODO"); } void visitInvoke(InvokeInst &I) { assert(0 && "TODO"); } void visitUnwind(UnwindInst &I) { assert(0 && "TODO"); } // void visitBinary(User &I, unsigned Opcode); void visitAdd(User &I) { visitBinary(I, ISD::ADD); } void visitSub(User &I); void visitMul(User &I) { visitBinary(I, ISD::MUL); } void visitDiv(User &I) { visitBinary(I, I.getType()->isUnsigned() ? ISD::UDIV : ISD::SDIV); } void visitRem(User &I) { visitBinary(I, I.getType()->isUnsigned() ? ISD::UREM : ISD::SREM); } void visitAnd(User &I) { visitBinary(I, ISD::AND); } void visitOr (User &I) { visitBinary(I, ISD::OR); } void visitXor(User &I) { visitBinary(I, ISD::XOR); } void visitShl(User &I) { visitBinary(I, ISD::SHL); } void visitShr(User &I) { visitBinary(I, I.getType()->isUnsigned() ? ISD::SRL : ISD::SRA); } void visitSetCC(User &I, ISD::CondCode SignedOpc, ISD::CondCode UnsignedOpc); void visitSetEQ(User &I) { visitSetCC(I, ISD::SETEQ, ISD::SETEQ); } void visitSetNE(User &I) { visitSetCC(I, ISD::SETNE, ISD::SETNE); } void visitSetLE(User &I) { visitSetCC(I, ISD::SETLE, ISD::SETULE); } void visitSetGE(User &I) { visitSetCC(I, ISD::SETGE, ISD::SETUGE); } void visitSetLT(User &I) { visitSetCC(I, ISD::SETLT, ISD::SETULT); } void visitSetGT(User &I) { visitSetCC(I, ISD::SETGT, ISD::SETUGT); } void visitGetElementPtr(User &I); void visitCast(User &I); void visitSelect(User &I); // void visitMalloc(MallocInst &I); void visitFree(FreeInst &I); void visitAlloca(AllocaInst &I); void visitLoad(LoadInst &I); void visitStore(StoreInst &I); void visitPHI(PHINode &I) { } // PHI nodes are handled specially. void visitCall(CallInst &I); void visitVAStart(CallInst &I); void visitVAArg(VAArgInst &I); void visitVAEnd(CallInst &I); void visitVACopy(CallInst &I); void visitFrameReturnAddress(CallInst &I, bool isFrameAddress); void visitMemIntrinsic(CallInst &I, unsigned Op); void visitUserOp1(Instruction &I) { assert(0 && "UserOp1 should not exist at instruction selection time!"); abort(); } void visitUserOp2(Instruction &I) { assert(0 && "UserOp2 should not exist at instruction selection time!"); abort(); } }; } // end namespace llvm void SelectionDAGLowering::visitRet(ReturnInst &I) { if (I.getNumOperands() == 0) { DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot())); return; } SDOperand Op1 = getValue(I.getOperand(0)); MVT::ValueType TmpVT; switch (Op1.getValueType()) { default: assert(0 && "Unknown value type!"); case MVT::i1: case MVT::i8: case MVT::i16: case MVT::i32: // If this is a machine where 32-bits is legal or expanded, promote to // 32-bits, otherwise, promote to 64-bits. if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote) TmpVT = TLI.getTypeToTransformTo(MVT::i32); else TmpVT = MVT::i32; // Extend integer types to result type. if (I.getOperand(0)->getType()->isSigned()) Op1 = DAG.getNode(ISD::SIGN_EXTEND, TmpVT, Op1); else Op1 = DAG.getNode(ISD::ZERO_EXTEND, TmpVT, Op1); break; case MVT::f32: // Extend float to double. Op1 = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Op1); break; case MVT::i64: case MVT::f64: break; // No extension needed! } DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot(), Op1)); } void SelectionDAGLowering::visitBr(BranchInst &I) { // Update machine-CFG edges. MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; // Figure out which block is immediately after the current one. MachineBasicBlock *NextBlock = 0; MachineFunction::iterator BBI = CurMBB; if (++BBI != CurMBB->getParent()->end()) NextBlock = BBI; if (I.isUnconditional()) { // If this is not a fall-through branch, emit the branch. if (Succ0MBB != NextBlock) DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(), DAG.getBasicBlock(Succ0MBB))); } else { MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; SDOperand Cond = getValue(I.getCondition()); if (Succ1MBB == NextBlock) { // If the condition is false, fall through. This means we should branch // if the condition is true to Succ #0. DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond, DAG.getBasicBlock(Succ0MBB))); } else if (Succ0MBB == NextBlock) { // If the condition is true, fall through. This means we should branch if // the condition is false to Succ #1. Invert the condition first. SDOperand True = DAG.getConstant(1, Cond.getValueType()); Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True); DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond, DAG.getBasicBlock(Succ1MBB))); } else { std::vector Ops; Ops.push_back(getRoot()); Ops.push_back(Cond); Ops.push_back(DAG.getBasicBlock(Succ0MBB)); Ops.push_back(DAG.getBasicBlock(Succ1MBB)); DAG.setRoot(DAG.getNode(ISD::BRCONDTWOWAY, MVT::Other, Ops)); } } } void SelectionDAGLowering::visitSub(User &I) { // -0.0 - X --> fneg if (ConstantFP *CFP = dyn_cast(I.getOperand(0))) if (CFP->isExactlyValue(-0.0)) { SDOperand Op2 = getValue(I.getOperand(1)); setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2)); return; } visitBinary(I, ISD::SUB); } void SelectionDAGLowering::visitBinary(User &I, unsigned Opcode) { SDOperand Op1 = getValue(I.getOperand(0)); SDOperand Op2 = getValue(I.getOperand(1)); if (isa(I)) Op2 = DAG.getNode(ISD::ZERO_EXTEND, TLI.getShiftAmountTy(), Op2); setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2)); } void SelectionDAGLowering::visitSetCC(User &I,ISD::CondCode SignedOpcode, ISD::CondCode UnsignedOpcode) { SDOperand Op1 = getValue(I.getOperand(0)); SDOperand Op2 = getValue(I.getOperand(1)); ISD::CondCode Opcode = SignedOpcode; if (I.getOperand(0)->getType()->isUnsigned()) Opcode = UnsignedOpcode; setValue(&I, DAG.getSetCC(Opcode, MVT::i1, Op1, Op2)); } void SelectionDAGLowering::visitSelect(User &I) { SDOperand Cond = getValue(I.getOperand(0)); SDOperand TrueVal = getValue(I.getOperand(1)); SDOperand FalseVal = getValue(I.getOperand(2)); setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond, TrueVal, FalseVal)); } void SelectionDAGLowering::visitCast(User &I) { SDOperand N = getValue(I.getOperand(0)); MVT::ValueType SrcTy = TLI.getValueType(I.getOperand(0)->getType()); MVT::ValueType DestTy = TLI.getValueType(I.getType()); if (N.getValueType() == DestTy) { setValue(&I, N); // noop cast. } else if (DestTy == MVT::i1) { // Cast to bool is a comparison against zero, not truncation to zero. SDOperand Zero = isInteger(SrcTy) ? DAG.getConstant(0, N.getValueType()) : DAG.getConstantFP(0.0, N.getValueType()); setValue(&I, DAG.getSetCC(ISD::SETNE, MVT::i1, N, Zero)); } else if (isInteger(SrcTy)) { if (isInteger(DestTy)) { // Int -> Int cast if (DestTy < SrcTy) // Truncating cast? setValue(&I, DAG.getNode(ISD::TRUNCATE, DestTy, N)); else if (I.getOperand(0)->getType()->isSigned()) setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestTy, N)); else setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestTy, N)); } else { // Int -> FP cast if (I.getOperand(0)->getType()->isSigned()) setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestTy, N)); else setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestTy, N)); } } else { assert(isFloatingPoint(SrcTy) && "Unknown value type!"); if (isFloatingPoint(DestTy)) { // FP -> FP cast if (DestTy < SrcTy) // Rounding cast? setValue(&I, DAG.getNode(ISD::FP_ROUND, DestTy, N)); else setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestTy, N)); } else { // FP -> Int cast. if (I.getType()->isSigned()) setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestTy, N)); else setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestTy, N)); } } } void SelectionDAGLowering::visitGetElementPtr(User &I) { SDOperand N = getValue(I.getOperand(0)); const Type *Ty = I.getOperand(0)->getType(); const Type *UIntPtrTy = TD.getIntPtrType(); for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end(); OI != E; ++OI) { Value *Idx = *OI; if (const StructType *StTy = dyn_cast (Ty)) { unsigned Field = cast(Idx)->getValue(); if (Field) { // N = N + Offset uint64_t Offset = TD.getStructLayout(StTy)->MemberOffsets[Field]; N = DAG.getNode(ISD::ADD, N.getValueType(), N, getIntPtrConstant(Offset)); } Ty = StTy->getElementType(Field); } else { Ty = cast(Ty)->getElementType(); if (!isa(Idx) || !cast(Idx)->isNullValue()) { // N = N + Idx * ElementSize; uint64_t ElementSize = TD.getTypeSize(Ty); SDOperand IdxN = getValue(Idx), Scale = getIntPtrConstant(ElementSize); // If the index is smaller or larger than intptr_t, truncate or extend // it. if (IdxN.getValueType() < Scale.getValueType()) { if (Idx->getType()->isSigned()) IdxN = DAG.getNode(ISD::SIGN_EXTEND, Scale.getValueType(), IdxN); else IdxN = DAG.getNode(ISD::ZERO_EXTEND, Scale.getValueType(), IdxN); } else if (IdxN.getValueType() > Scale.getValueType()) IdxN = DAG.getNode(ISD::TRUNCATE, Scale.getValueType(), IdxN); IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale); N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN); } } } setValue(&I, N); } void SelectionDAGLowering::visitAlloca(AllocaInst &I) { // If this is a fixed sized alloca in the entry block of the function, // allocate it statically on the stack. if (FuncInfo.StaticAllocaMap.count(&I)) return; // getValue will auto-populate this. const Type *Ty = I.getAllocatedType(); uint64_t TySize = TLI.getTargetData().getTypeSize(Ty); unsigned Align = TLI.getTargetData().getTypeAlignment(Ty); SDOperand AllocSize = getValue(I.getArraySize()); MVT::ValueType IntPtr = TLI.getPointerTy(); if (IntPtr < AllocSize.getValueType()) AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize); else if (IntPtr > AllocSize.getValueType()) AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize); AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize, getIntPtrConstant(TySize)); // Handle alignment. If the requested alignment is less than or equal to the // stack alignment, ignore it and round the size of the allocation up to the // stack alignment size. If the size is greater than the stack alignment, we // note this in the DYNAMIC_STACKALLOC node. unsigned StackAlign = TLI.getTargetMachine().getFrameInfo()->getStackAlignment(); if (Align <= StackAlign) { Align = 0; // Add SA-1 to the size. AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize, getIntPtrConstant(StackAlign-1)); // Mask out the low bits for alignment purposes. AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize, getIntPtrConstant(~(uint64_t)(StackAlign-1))); } std::vector VTs; VTs.push_back(AllocSize.getValueType()); VTs.push_back(MVT::Other); std::vector Ops; Ops.push_back(getRoot()); Ops.push_back(AllocSize); Ops.push_back(getIntPtrConstant(Align)); SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, Ops); DAG.setRoot(setValue(&I, DSA).getValue(1)); // Inform the Frame Information that we have just allocated a variable-sized // object. CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject(); } void SelectionDAGLowering::visitLoad(LoadInst &I) { SDOperand Ptr = getValue(I.getOperand(0)); SDOperand Root; if (I.isVolatile()) Root = getRoot(); else { // Do not serialize non-volatile loads against each other. Root = DAG.getRoot(); } SDOperand L = DAG.getLoad(TLI.getValueType(I.getType()), Root, Ptr, DAG.getSrcValue(I.getOperand(0))); setValue(&I, L); if (I.isVolatile()) DAG.setRoot(L.getValue(1)); else PendingLoads.push_back(L.getValue(1)); } void SelectionDAGLowering::visitStore(StoreInst &I) { Value *SrcV = I.getOperand(0); SDOperand Src = getValue(SrcV); SDOperand Ptr = getValue(I.getOperand(1)); DAG.setRoot(DAG.getNode(ISD::STORE, MVT::Other, getRoot(), Src, Ptr, DAG.getSrcValue(I.getOperand(1)))); } void SelectionDAGLowering::visitCall(CallInst &I) { const char *RenameFn = 0; SDOperand Tmp; if (Function *F = I.getCalledFunction()) if (F->isExternal()) switch (F->getIntrinsicID()) { case 0: // Not an LLVM intrinsic. if (F->getName() == "fabs" || F->getName() == "fabsf") { if (I.getNumOperands() == 2 && // Basic sanity checks. I.getOperand(1)->getType()->isFloatingPoint() && I.getType() == I.getOperand(1)->getType()) { Tmp = getValue(I.getOperand(1)); setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp)); return; } } else if (F->getName() == "sin" || F->getName() == "sinf") { if (I.getNumOperands() == 2 && // Basic sanity checks. I.getOperand(1)->getType()->isFloatingPoint() && I.getType() == I.getOperand(1)->getType()) { Tmp = getValue(I.getOperand(1)); setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp)); return; } } else if (F->getName() == "cos" || F->getName() == "cosf") { if (I.getNumOperands() == 2 && // Basic sanity checks. I.getOperand(1)->getType()->isFloatingPoint() && I.getType() == I.getOperand(1)->getType()) { Tmp = getValue(I.getOperand(1)); setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp)); return; } } break; case Intrinsic::vastart: visitVAStart(I); return; case Intrinsic::vaend: visitVAEnd(I); return; case Intrinsic::vacopy: visitVACopy(I); return; case Intrinsic::returnaddress: visitFrameReturnAddress(I, false); return; case Intrinsic::frameaddress: visitFrameReturnAddress(I, true); return; case Intrinsic::setjmp: RenameFn = "setjmp"; break; case Intrinsic::longjmp: RenameFn = "longjmp"; break; case Intrinsic::memcpy: visitMemIntrinsic(I, ISD::MEMCPY); return; case Intrinsic::memset: visitMemIntrinsic(I, ISD::MEMSET); return; case Intrinsic::memmove: visitMemIntrinsic(I, ISD::MEMMOVE); return; case Intrinsic::readport: case Intrinsic::readio: { std::vector VTs; VTs.push_back(TLI.getValueType(I.getType())); VTs.push_back(MVT::Other); std::vector Ops; Ops.push_back(getRoot()); Ops.push_back(getValue(I.getOperand(1))); Tmp = DAG.getNode(F->getIntrinsicID() == Intrinsic::readport ? ISD::READPORT : ISD::READIO, VTs, Ops); setValue(&I, Tmp); DAG.setRoot(Tmp.getValue(1)); return; } case Intrinsic::writeport: case Intrinsic::writeio: DAG.setRoot(DAG.getNode(F->getIntrinsicID() == Intrinsic::writeport ? ISD::WRITEPORT : ISD::WRITEIO, MVT::Other, getRoot(), getValue(I.getOperand(1)), getValue(I.getOperand(2)))); return; case Intrinsic::dbg_stoppoint: case Intrinsic::dbg_region_start: case Intrinsic::dbg_region_end: case Intrinsic::dbg_func_start: case Intrinsic::dbg_declare: if (I.getType() != Type::VoidTy) setValue(&I, DAG.getNode(ISD::UNDEF, TLI.getValueType(I.getType()))); return; case Intrinsic::isunordered: setValue(&I, DAG.getSetCC(ISD::SETUO, MVT::i1,getValue(I.getOperand(1)), getValue(I.getOperand(2)))); return; case Intrinsic::sqrt: setValue(&I, DAG.getNode(ISD::FSQRT, getValue(I.getOperand(1)).getValueType(), getValue(I.getOperand(1)))); return; case Intrinsic::pcmarker: Tmp = getValue(I.getOperand(1)); DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp)); return; case Intrinsic::cttz: setValue(&I, DAG.getNode(ISD::CTTZ, getValue(I.getOperand(1)).getValueType(), getValue(I.getOperand(1)))); return; case Intrinsic::ctlz: setValue(&I, DAG.getNode(ISD::CTLZ, getValue(I.getOperand(1)).getValueType(), getValue(I.getOperand(1)))); return; case Intrinsic::ctpop: setValue(&I, DAG.getNode(ISD::CTPOP, getValue(I.getOperand(1)).getValueType(), getValue(I.getOperand(1)))); return; default: std::cerr << I; assert(0 && "This intrinsic is not implemented yet!"); return; } SDOperand Callee; if (!RenameFn) Callee = getValue(I.getOperand(0)); else Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy()); std::vector > Args; for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) { Value *Arg = I.getOperand(i); SDOperand ArgNode = getValue(Arg); Args.push_back(std::make_pair(ArgNode, Arg->getType())); } const PointerType *PT = cast(I.getCalledValue()->getType()); const FunctionType *FTy = cast(PT->getElementType()); std::pair Result = TLI.LowerCallTo(getRoot(), I.getType(), FTy->isVarArg(), I.getCallingConv(), I.isTailCall(), Callee, Args, DAG); if (I.getType() != Type::VoidTy) setValue(&I, Result.first); DAG.setRoot(Result.second); } void SelectionDAGLowering::visitMalloc(MallocInst &I) { SDOperand Src = getValue(I.getOperand(0)); MVT::ValueType IntPtr = TLI.getPointerTy(); if (IntPtr < Src.getValueType()) Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src); else if (IntPtr > Src.getValueType()) Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src); // Scale the source by the type size. uint64_t ElementSize = TD.getTypeSize(I.getType()->getElementType()); Src = DAG.getNode(ISD::MUL, Src.getValueType(), Src, getIntPtrConstant(ElementSize)); std::vector > Args; Args.push_back(std::make_pair(Src, TLI.getTargetData().getIntPtrType())); std::pair Result = TLI.LowerCallTo(getRoot(), I.getType(), false, CallingConv::C, true, DAG.getExternalSymbol("malloc", IntPtr), Args, DAG); setValue(&I, Result.first); // Pointers always fit in registers DAG.setRoot(Result.second); } void SelectionDAGLowering::visitFree(FreeInst &I) { std::vector > Args; Args.push_back(std::make_pair(getValue(I.getOperand(0)), TLI.getTargetData().getIntPtrType())); MVT::ValueType IntPtr = TLI.getPointerTy(); std::pair Result = TLI.LowerCallTo(getRoot(), Type::VoidTy, false, CallingConv::C, true, DAG.getExternalSymbol("free", IntPtr), Args, DAG); DAG.setRoot(Result.second); } std::pair TargetLowering::LowerVAStart(SDOperand Chain, SelectionDAG &DAG, SDOperand Dest) { // We have no sane default behavior, just emit a useful error message and bail // out. std::cerr << "Variable arguments handling not implemented on this target!\n"; abort(); return std::make_pair(SDOperand(), SDOperand()); } SDOperand TargetLowering::LowerVAEnd(SDOperand Chain, SDOperand L, SelectionDAG &DAG) { // Default to a noop. return Chain; } std::pair TargetLowering::LowerVACopy(SDOperand Chain, SDOperand Src, SDOperand Dest, SelectionDAG &DAG) { //Default to returning the input list SDOperand Val = DAG.getLoad(getPointerTy(), Chain, Src, DAG.getSrcValue(NULL)); SDOperand Result = DAG.getNode(ISD::STORE, MVT::Other, Val.getValue(1), Val, Dest, DAG.getSrcValue(NULL)); return std::make_pair(Result, Result); } std::pair TargetLowering::LowerVAArgNext(SDOperand Chain, SDOperand VAList, const Type *ArgTy, SelectionDAG &DAG) { // We have no sane default behavior, just emit a useful error message and bail // out. std::cerr << "Variable arguments handling not implemented on this target!\n"; abort(); return std::make_pair(SDOperand(), SDOperand()); } void SelectionDAGLowering::visitVAStart(CallInst &I) { std::pair Result = TLI.LowerVAStart(getRoot(), DAG, getValue(I.getOperand(1))); setValue(&I, Result.first); DAG.setRoot(Result.second); } void SelectionDAGLowering::visitVAArg(VAArgInst &I) { std::pair Result = TLI.LowerVAArgNext(getRoot(), getValue(I.getOperand(0)), I.getType(), DAG); setValue(&I, Result.first); DAG.setRoot(Result.second); } void SelectionDAGLowering::visitVAEnd(CallInst &I) { DAG.setRoot(TLI.LowerVAEnd(getRoot(), getValue(I.getOperand(1)), DAG)); } void SelectionDAGLowering::visitVACopy(CallInst &I) { std::pair Result = TLI.LowerVACopy(getRoot(), getValue(I.getOperand(2)), getValue(I.getOperand(1)), DAG); setValue(&I, Result.first); DAG.setRoot(Result.second); } // It is always conservatively correct for llvm.returnaddress and // llvm.frameaddress to return 0. std::pair TargetLowering::LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain, unsigned Depth, SelectionDAG &DAG) { return std::make_pair(DAG.getConstant(0, getPointerTy()), Chain); } SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) { assert(0 && "LowerOperation not implemented for this target!"); abort(); return SDOperand(); } void SelectionDAGLowering::visitFrameReturnAddress(CallInst &I, bool isFrame) { unsigned Depth = (unsigned)cast(I.getOperand(1))->getValue(); std::pair Result = TLI.LowerFrameReturnAddress(isFrame, getRoot(), Depth, DAG); setValue(&I, Result.first); DAG.setRoot(Result.second); } void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) { std::vector Ops; Ops.push_back(getRoot()); Ops.push_back(getValue(I.getOperand(1))); Ops.push_back(getValue(I.getOperand(2))); Ops.push_back(getValue(I.getOperand(3))); Ops.push_back(getValue(I.getOperand(4))); DAG.setRoot(DAG.getNode(Op, MVT::Other, Ops)); } //===----------------------------------------------------------------------===// // SelectionDAGISel code //===----------------------------------------------------------------------===// unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) { return RegMap->createVirtualRegister(TLI.getRegClassFor(VT)); } bool SelectionDAGISel::runOnFunction(Function &Fn) { MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine()); RegMap = MF.getSSARegMap(); DEBUG(std::cerr << "\n\n\n=== " << Fn.getName() << "\n"); FunctionLoweringInfo FuncInfo(TLI, Fn, MF); for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) SelectBasicBlock(I, MF, FuncInfo); return true; } SDOperand SelectionDAGISel:: CopyValueToVirtualRegister(SelectionDAGLowering &SDL, Value *V, unsigned Reg) { SelectionDAG &DAG = SDL.DAG; SDOperand Op = SDL.getValue(V); assert((Op.getOpcode() != ISD::CopyFromReg || cast(Op)->getReg() != Reg) && "Copy from a reg to the same reg!"); return DAG.getCopyToReg(SDL.getRoot(), Op, Reg); } /// IsOnlyUsedInOneBasicBlock - If the specified argument is only used in a /// single basic block, return that block. Otherwise, return a null pointer. static BasicBlock *IsOnlyUsedInOneBasicBlock(Argument *A) { if (A->use_empty()) return 0; BasicBlock *BB = cast(A->use_back())->getParent(); for (Argument::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI) if (isa(*UI) || cast(*UI)->getParent() != BB) return 0; // Disagreement among the users? // Okay, there is a single BB user. Only permit this optimization if this is // the entry block, otherwise, we might sink argument loads into loops and // stuff. Later, when we have global instruction selection, this won't be an // issue clearly. if (BB == BB->getParent()->begin()) return BB; return 0; } void SelectionDAGISel:: LowerArguments(BasicBlock *BB, SelectionDAGLowering &SDL, std::vector &UnorderedChains) { // If this is the entry block, emit arguments. Function &F = *BB->getParent(); FunctionLoweringInfo &FuncInfo = SDL.FuncInfo; if (BB == &F.front()) { SDOperand OldRoot = SDL.DAG.getRoot(); std::vector Args = TLI.LowerArguments(F, SDL.DAG); // If there were side effects accessing the argument list, do not do // anything special. if (OldRoot != SDL.DAG.getRoot()) { unsigned a = 0; for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E; ++AI,++a) if (!AI->use_empty()) { SDL.setValue(AI, Args[a]); SDOperand Copy = CopyValueToVirtualRegister(SDL, AI, FuncInfo.ValueMap[AI]); UnorderedChains.push_back(Copy); } } else { // Otherwise, if any argument is only accessed in a single basic block, // emit that argument only to that basic block. unsigned a = 0; for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E; ++AI,++a) if (!AI->use_empty()) { if (BasicBlock *BBU = IsOnlyUsedInOneBasicBlock(AI)) { FuncInfo.BlockLocalArguments.insert(std::make_pair(BBU, std::make_pair(AI, a))); } else { SDL.setValue(AI, Args[a]); SDOperand Copy = CopyValueToVirtualRegister(SDL, AI, FuncInfo.ValueMap[AI]); UnorderedChains.push_back(Copy); } } } EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction()); } // See if there are any block-local arguments that need to be emitted in this // block. if (!FuncInfo.BlockLocalArguments.empty()) { std::multimap >::iterator BLAI = FuncInfo.BlockLocalArguments.lower_bound(BB); if (BLAI != FuncInfo.BlockLocalArguments.end() && BLAI->first == BB) { // Lower the arguments into this block. std::vector Args = TLI.LowerArguments(F, SDL.DAG); // Set up the value mapping for the local arguments. for (; BLAI != FuncInfo.BlockLocalArguments.end() && BLAI->first == BB; ++BLAI) SDL.setValue(BLAI->second.first, Args[BLAI->second.second]); // Any dead arguments will just be ignored here. } } } void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB, std::vector > &PHINodesToUpdate, FunctionLoweringInfo &FuncInfo) { SelectionDAGLowering SDL(DAG, TLI, FuncInfo); std::vector UnorderedChains; // Lower any arguments needed in this block. LowerArguments(LLVMBB, SDL, UnorderedChains); BB = FuncInfo.MBBMap[LLVMBB]; SDL.setCurrentBasicBlock(BB); // Lower all of the non-terminator instructions. for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I) SDL.visit(*I); // Ensure that all instructions which are used outside of their defining // blocks are available as virtual registers. for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I) if (!I->use_empty() && !isa(I)) { std::map::iterator VMI =FuncInfo.ValueMap.find(I); if (VMI != FuncInfo.ValueMap.end()) UnorderedChains.push_back( CopyValueToVirtualRegister(SDL, I, VMI->second)); } // Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to // ensure constants are generated when needed. Remember the virtual registers // that need to be added to the Machine PHI nodes as input. We cannot just // directly add them, because expansion might result in multiple MBB's for one // BB. As such, the start of the BB might correspond to a different MBB than // the end. // // Emit constants only once even if used by multiple PHI nodes. std::map ConstantsOut; // Check successor nodes PHI nodes that expect a constant to be available from // this block. TerminatorInst *TI = LLVMBB->getTerminator(); for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { BasicBlock *SuccBB = TI->getSuccessor(succ); MachineBasicBlock::iterator MBBI = FuncInfo.MBBMap[SuccBB]->begin(); PHINode *PN; // At this point we know that there is a 1-1 correspondence between LLVM PHI // nodes and Machine PHI nodes, but the incoming operands have not been // emitted yet. for (BasicBlock::iterator I = SuccBB->begin(); (PN = dyn_cast(I)); ++I) if (!PN->use_empty()) { unsigned Reg; Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); if (Constant *C = dyn_cast(PHIOp)) { unsigned &RegOut = ConstantsOut[C]; if (RegOut == 0) { RegOut = FuncInfo.CreateRegForValue(C); UnorderedChains.push_back( CopyValueToVirtualRegister(SDL, C, RegOut)); } Reg = RegOut; } else { Reg = FuncInfo.ValueMap[PHIOp]; if (Reg == 0) { assert(isa(PHIOp) && FuncInfo.StaticAllocaMap.count(cast(PHIOp)) && "Didn't codegen value into a register!??"); Reg = FuncInfo.CreateRegForValue(PHIOp); UnorderedChains.push_back( CopyValueToVirtualRegister(SDL, PHIOp, Reg)); } } // Remember that this register needs to added to the machine PHI node as // the input for this MBB. unsigned NumElements = TLI.getNumElements(TLI.getValueType(PN->getType())); for (unsigned i = 0, e = NumElements; i != e; ++i) PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); } } ConstantsOut.clear(); // Turn all of the unordered chains into one factored node. if (!UnorderedChains.empty()) { UnorderedChains.push_back(SDL.getRoot()); DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, UnorderedChains)); } // Lower the terminator after the copies are emitted. SDL.visit(*LLVMBB->getTerminator()); // Make sure the root of the DAG is up-to-date. DAG.setRoot(SDL.getRoot()); } void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF, FunctionLoweringInfo &FuncInfo) { SelectionDAG DAG(TLI, MF); CurDAG = &DAG; std::vector > PHINodesToUpdate; // First step, lower LLVM code to some DAG. This DAG may use operations and // types that are not supported by the target. BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo); DEBUG(std::cerr << "Lowered selection DAG:\n"); DEBUG(DAG.dump()); // Second step, hack on the DAG until it only uses operations and types that // the target supports. DAG.Legalize(); DEBUG(std::cerr << "Legalized selection DAG:\n"); DEBUG(DAG.dump()); // Third, instruction select all of the operations to machine code, adding the // code to the MachineBasicBlock. InstructionSelectBasicBlock(DAG); if (ViewDAGs) DAG.viewGraph(); DEBUG(std::cerr << "Selected machine code:\n"); DEBUG(BB->dump()); // Next, now that we know what the last MBB the LLVM BB expanded is, update // PHI nodes in successors. for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) { MachineInstr *PHI = PHINodesToUpdate[i].first; assert(PHI->getOpcode() == TargetInstrInfo::PHI && "This is not a machine PHI node that we are updating!"); PHI->addRegOperand(PHINodesToUpdate[i].second); PHI->addMachineBasicBlockOperand(BB); } // Finally, add the CFG edges from the last selected MBB to the successor // MBBs. TerminatorInst *TI = LLVMBB->getTerminator(); for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[TI->getSuccessor(i)]; BB->addSuccessor(Succ0MBB); } }