//===-- llvm/CodeGen/DIEHash.cpp - Dwarf Hashing Framework ----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains support for DWARF4 hashing of DIEs. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "dwarfdebug" #include "DIE.h" #include "DIEHash.h" #include "DwarfCompileUnit.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/StringRef.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Dwarf.h" #include "llvm/Support/Endian.h" #include "llvm/Support/MD5.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; /// \brief Grabs the string in whichever attribute is passed in and returns /// a reference to it. static StringRef getDIEStringAttr(DIE *Die, uint16_t Attr) { const SmallVectorImpl &Values = Die->getValues(); const DIEAbbrev &Abbrevs = Die->getAbbrev(); // Iterate through all the attributes until we find the one we're // looking for, if we can't find it return an empty string. for (size_t i = 0; i < Values.size(); ++i) { if (Abbrevs.getData()[i].getAttribute() == Attr) { DIEValue *V = Values[i]; assert(isa(V) && "String requested. Not a string."); DIEString *S = cast(V); return S->getString(); } } return StringRef(""); } /// \brief Adds the string in \p Str to the hash. This also hashes /// a trailing NULL with the string. void DIEHash::addString(StringRef Str) { DEBUG(dbgs() << "Adding string " << Str << " to hash.\n"); Hash.update(Str); Hash.update(makeArrayRef((uint8_t)'\0')); } // FIXME: The LEB128 routines are copied and only slightly modified out of // LEB128.h. /// \brief Adds the unsigned in \p Value to the hash encoded as a ULEB128. void DIEHash::addULEB128(uint64_t Value) { DEBUG(dbgs() << "Adding ULEB128 " << Value << " to hash.\n"); do { uint8_t Byte = Value & 0x7f; Value >>= 7; if (Value != 0) Byte |= 0x80; // Mark this byte to show that more bytes will follow. Hash.update(Byte); } while (Value != 0); } /// \brief Including \p Parent adds the context of Parent to the hash.. void DIEHash::addParentContext(DIE *Parent) { DEBUG(dbgs() << "Adding parent context to hash...\n"); // [7.27.2] For each surrounding type or namespace beginning with the // outermost such construct... SmallVector Parents; while (Parent->getTag() != dwarf::DW_TAG_compile_unit) { Parents.push_back(Parent); Parent = Parent->getParent(); } // Reverse iterate over our list to go from the outermost construct to the // innermost. for (SmallVectorImpl::reverse_iterator I = Parents.rbegin(), E = Parents.rend(); I != E; ++I) { DIE *Die = *I; // ... Append the letter "C" to the sequence... addULEB128('C'); // ... Followed by the DWARF tag of the construct... addULEB128(Die->getTag()); // ... Then the name, taken from the DW_AT_name attribute. StringRef Name = getDIEStringAttr(Die, dwarf::DW_AT_name); DEBUG(dbgs() << "... adding context: " << Name << "\n"); if (!Name.empty()) addString(Name); } } // Collect all of the attributes for a particular DIE in single structure. void DIEHash::collectAttributes(DIE *Die, DIEAttrs &Attrs) { const SmallVectorImpl &Values = Die->getValues(); const DIEAbbrev &Abbrevs = Die->getAbbrev(); #define COLLECT_ATTR(NAME) \ Attrs.NAME.Val = Values[i]; \ Attrs.NAME.Desc = &Abbrevs.getData()[i]; for (size_t i = 0, e = Values.size(); i != e; ++i) { DEBUG(dbgs() << "Attribute: " << dwarf::AttributeString(Abbrevs.getData()[i].getAttribute()) << " added.\n"); switch (Abbrevs.getData()[i].getAttribute()) { case dwarf::DW_AT_name: COLLECT_ATTR(DW_AT_name); break; default: break; } } } // Hash an individual attribute \param Attr based on the type of attribute and // the form. void DIEHash::hashAttribute(AttrEntry Attr) { const DIEValue *Value = Attr.Val; const DIEAbbrevData *Desc = Attr.Desc; // TODO: Add support for types. // Add the letter A to the hash. addULEB128('A'); // Then the attribute code and form. addULEB128(Desc->getAttribute()); addULEB128(Desc->getForm()); // TODO: Add support for additional forms. switch (Desc->getForm()) { case dwarf::DW_FORM_strp: addString(cast(Value)->getString()); break; } } // Go through the attributes from \param Attrs in the order specified in 7.27.4 // and hash them. void DIEHash::hashAttributes(const DIEAttrs &Attrs) { #define ADD_ATTR(ATTR) \ { \ if (ATTR.Val != 0) \ hashAttribute(ATTR); \ } // FIXME: Add the rest. ADD_ATTR(Attrs.DW_AT_name); } // Add all of the attributes for \param Die to the hash. void DIEHash::addAttributes(DIE *Die) { DIEAttrs Attrs; memset(&Attrs, 0, sizeof(Attrs)); collectAttributes(Die, Attrs); hashAttributes(Attrs); } // Compute the hash of a DIE. This is based on the type signature computation // given in section 7.27 of the DWARF4 standard. It is the md5 hash of a // flattened description of the DIE. void DIEHash::computeHash(DIE *Die) { // Append the letter 'D', followed by the DWARF tag of the DIE. addULEB128('D'); addULEB128(Die->getTag()); // Add each of the attributes of the DIE. addAttributes(Die); // Then hash each of the children of the DIE. for (std::vector::const_iterator I = Die->getChildren().begin(), E = Die->getChildren().end(); I != E; ++I) computeHash(*I); } /// This is based on the type signature computation given in section 7.27 of the /// DWARF4 standard. It is the md5 hash of a flattened description of the DIE /// with the exception that we are hashing only the context and the name of the /// type. uint64_t DIEHash::computeDIEODRSignature(DIE *Die) { // Add the contexts to the hash. We won't be computing the ODR hash for // function local types so it's safe to use the generic context hashing // algorithm here. // FIXME: If we figure out how to account for linkage in some way we could // actually do this with a slight modification to the parent hash algorithm. DIE *Parent = Die->getParent(); if (Parent) addParentContext(Parent); // Add the current DIE information. // Add the DWARF tag of the DIE. addULEB128(Die->getTag()); // Add the name of the type to the hash. addString(getDIEStringAttr(Die, dwarf::DW_AT_name)); // Now get the result. MD5::MD5Result Result; Hash.final(Result); // ... take the least significant 8 bytes and return those. Our MD5 // implementation always returns its results in little endian, swap bytes // appropriately. return *reinterpret_cast(Result + 8); } /// This is based on the type signature computation given in section 7.27 of the /// DWARF4 standard. It is an md5 hash of the flattened description of the DIE /// with the inclusion of the full CU and all top level CU entities. uint64_t DIEHash::computeCUSignature(DIE *Die) { // Hash the DIE. computeHash(Die); // Now return the result. MD5::MD5Result Result; Hash.final(Result); // ... take the least significant 8 bytes and return those. Our MD5 // implementation always returns its results in little endian, swap bytes // appropriately. return *reinterpret_cast(Result + 8); }