//===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass transforms loops by placing phi nodes at the end of the loops for // all values that are live across the loop boundary. For example, it turns // the left into the right code: // // for (...) for (...) // if (c) if (c) // X1 = ... X1 = ... // else else // X2 = ... X2 = ... // X3 = phi(X1, X2) X3 = phi(X1, X2) // ... = X3 + 4 X4 = phi(X3) // ... = X4 + 4 // // This is still valid LLVM; the extra phi nodes are purely redundant, and will // be trivially eliminated by InstCombine. The major benefit of this // transformation is that it makes many other loop optimizations, such as // LoopUnswitching, simpler. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "lcssa" #include "llvm/Transforms/Scalar.h" #include "llvm/Constants.h" #include "llvm/Pass.h" #include "llvm/Function.h" #include "llvm/Instructions.h" #include "llvm/LLVMContext.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Support/CFG.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/PredIteratorCache.h" #include #include using namespace llvm; STATISTIC(NumLCSSA, "Number of live out of a loop variables"); namespace { struct VISIBILITY_HIDDEN LCSSA : public LoopPass { static char ID; // Pass identification, replacement for typeid LCSSA() : LoopPass(&ID) {} // Cached analysis information for the current function. LoopInfo *LI; DominatorTree *DT; std::vector LoopBlocks; PredIteratorCache PredCache; Loop *L; virtual bool runOnLoop(Loop *L, LPPassManager &LPM); void ProcessInstruction(Instruction* Instr, const SmallVector& exitBlocks); /// This transformation requires natural loop information & requires that /// loop preheaders be inserted into the CFG. It maintains both of these, /// as well as the CFG. It also requires dominator information. /// virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); AU.addRequiredID(LoopSimplifyID); AU.addPreservedID(LoopSimplifyID); AU.addRequiredTransitive(); AU.addPreserved(); AU.addRequiredTransitive(); AU.addPreserved(); AU.addPreserved(); // Request DominanceFrontier now, even though LCSSA does // not use it. This allows Pass Manager to schedule Dominance // Frontier early enough such that one LPPassManager can handle // multiple loop transformation passes. AU.addRequired(); AU.addPreserved(); } private: /// verifyAnalysis() - Verify loop nest. virtual void verifyAnalysis() const { // Check the special guarantees that LCSSA makes. assert(L->isLCSSAForm() && "LCSSA form not preserved!"); } void getLoopValuesUsedOutsideLoop(Loop *L, SetVector &AffectedValues, const SmallVector& exitBlocks); Value *GetValueForBlock(DomTreeNode *BB, Instruction *OrigInst, DenseMap &Phis); /// inLoop - returns true if the given block is within the current loop bool inLoop(BasicBlock* B) { return std::binary_search(LoopBlocks.begin(), LoopBlocks.end(), B); } }; } char LCSSA::ID = 0; static RegisterPass X("lcssa", "Loop-Closed SSA Form Pass"); Pass *llvm::createLCSSAPass() { return new LCSSA(); } const PassInfo *const llvm::LCSSAID = &X; /// runOnFunction - Process all loops in the function, inner-most out. bool LCSSA::runOnLoop(Loop *l, LPPassManager &LPM) { L = l; PredCache.clear(); LI = &LPM.getAnalysis(); DT = &getAnalysis(); // Speed up queries by creating a sorted list of blocks LoopBlocks.clear(); LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end()); std::sort(LoopBlocks.begin(), LoopBlocks.end()); SmallVector exitBlocks; L->getExitBlocks(exitBlocks); SetVector AffectedValues; getLoopValuesUsedOutsideLoop(L, AffectedValues, exitBlocks); // If no values are affected, we can save a lot of work, since we know that // nothing will be changed. if (AffectedValues.empty()) return false; // Iterate over all affected values for this loop and insert Phi nodes // for them in the appropriate exit blocks for (SetVector::iterator I = AffectedValues.begin(), E = AffectedValues.end(); I != E; ++I) ProcessInstruction(*I, exitBlocks); assert(L->isLCSSAForm()); return true; } /// processInstruction - Given a live-out instruction, insert LCSSA Phi nodes, /// eliminate all out-of-loop uses. void LCSSA::ProcessInstruction(Instruction *Instr, const SmallVector& exitBlocks) { ++NumLCSSA; // We are applying the transformation // Keep track of the blocks that have the value available already. DenseMap Phis; BasicBlock *DomBB = Instr->getParent(); // Invoke instructions are special in that their result value is not available // along their unwind edge. The code below tests to see whether DomBB dominates // the value, so adjust DomBB to the normal destination block, which is // effectively where the value is first usable. if (InvokeInst *Inv = dyn_cast(Instr)) DomBB = Inv->getNormalDest(); DomTreeNode *DomNode = DT->getNode(DomBB); // Insert the LCSSA phi's into the exit blocks (dominated by the value), and // add them to the Phi's map. for (SmallVector::const_iterator BBI = exitBlocks.begin(), BBE = exitBlocks.end(); BBI != BBE; ++BBI) { BasicBlock *BB = *BBI; DomTreeNode *ExitBBNode = DT->getNode(BB); Value *&Phi = Phis[ExitBBNode]; if (!Phi && DT->dominates(DomNode, ExitBBNode)) { PHINode *PN = PHINode::Create(Instr->getType(), Instr->getName()+".lcssa", BB->begin()); PN->reserveOperandSpace(PredCache.GetNumPreds(BB)); // Remember that this phi makes the value alive in this block. Phi = PN; // Add inputs from inside the loop for this PHI. for (BasicBlock** PI = PredCache.GetPreds(BB); *PI; ++PI) PN->addIncoming(Instr, *PI); } } // Record all uses of Instr outside the loop. We need to rewrite these. The // LCSSA phis won't be included because they use the value in the loop. for (Value::use_iterator UI = Instr->use_begin(), E = Instr->use_end(); UI != E;) { BasicBlock *UserBB = cast(*UI)->getParent(); if (PHINode *P = dyn_cast(*UI)) { UserBB = P->getIncomingBlock(UI); } // If the user is in the loop, don't rewrite it! if (UserBB == Instr->getParent() || inLoop(UserBB)) { ++UI; continue; } // Otherwise, patch up uses of the value with the appropriate LCSSA Phi, // inserting PHI nodes into join points where needed. Value *Val = GetValueForBlock(DT->getNode(UserBB), Instr, Phis); // Preincrement the iterator to avoid invalidating it when we change the // value. Use &U = UI.getUse(); ++UI; U.set(Val); } } /// getLoopValuesUsedOutsideLoop - Return any values defined in the loop that /// are used by instructions outside of it. void LCSSA::getLoopValuesUsedOutsideLoop(Loop *L, SetVector &AffectedValues, const SmallVector& exitBlocks) { // FIXME: For large loops, we may be able to avoid a lot of use-scanning // by using dominance information. In particular, if a block does not // dominate any of the loop exits, then none of the values defined in the // block could be used outside the loop. for (Loop::block_iterator BB = L->block_begin(), BE = L->block_end(); BB != BE; ++BB) { for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ++I) for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE; ++UI) { BasicBlock *UserBB = cast(*UI)->getParent(); if (PHINode* p = dyn_cast(*UI)) { UserBB = p->getIncomingBlock(UI); } if (*BB != UserBB && !inLoop(UserBB)) { AffectedValues.insert(I); break; } } } } /// GetValueForBlock - Get the value to use within the specified basic block. /// available values are in Phis. Value *LCSSA::GetValueForBlock(DomTreeNode *BB, Instruction *OrigInst, DenseMap &Phis) { // If there is no dominator info for this BB, it is unreachable. if (BB == 0) return UndefValue::get(OrigInst->getType()); // If we have already computed this value, return the previously computed val. if (Phis.count(BB)) return Phis[BB]; DomTreeNode *IDom = BB->getIDom(); // Otherwise, there are two cases: we either have to insert a PHI node or we // don't. We need to insert a PHI node if this block is not dominated by one // of the exit nodes from the loop (the loop could have multiple exits, and // though the value defined *inside* the loop dominated all its uses, each // exit by itself may not dominate all the uses). // // The simplest way to check for this condition is by checking to see if the // idom is in the loop. If so, we *know* that none of the exit blocks // dominate this block. Note that we *know* that the block defining the // original instruction is in the idom chain, because if it weren't, then the // original value didn't dominate this use. if (!inLoop(IDom->getBlock())) { // Idom is not in the loop, we must still be "below" the exit block and must // be fully dominated by the value live in the idom. Value* val = GetValueForBlock(IDom, OrigInst, Phis); Phis.insert(std::make_pair(BB, val)); return val; } BasicBlock *BBN = BB->getBlock(); // Otherwise, the idom is the loop, so we need to insert a PHI node. Do so // now, then get values to fill in the incoming values for the PHI. PHINode *PN = PHINode::Create(OrigInst->getType(), OrigInst->getName() + ".lcssa", BBN->begin()); PN->reserveOperandSpace(PredCache.GetNumPreds(BBN)); Phis.insert(std::make_pair(BB, PN)); // Fill in the incoming values for the block. for (BasicBlock** PI = PredCache.GetPreds(BBN); *PI; ++PI) PN->addIncoming(GetValueForBlock(DT->getNode(*PI), OrigInst, Phis), *PI); return PN; }