//===-- PrologEpilogInserter.cpp - Insert Prolog/Epilog code in function --===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass is responsible for finalizing the functions frame layout, saving // callee saved registers, and for emitting prolog & epilog code for the // function. // // This pass must be run after register allocation. After this pass is // executed, it is illegal to construct MO_FrameIndex operands. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/MRegisterInfo.h" #include "llvm/Target/TargetFrameInfo.h" #include "llvm/Target/TargetInstrInfo.h" using namespace llvm; namespace { struct PEI : public MachineFunctionPass { const char *getPassName() const { return "Prolog/Epilog Insertion & Frame Finalization"; } /// runOnMachineFunction - Insert prolog/epilog code and replace abstract /// frame indexes with appropriate references. /// bool runOnMachineFunction(MachineFunction &Fn) { // Scan the function for modified caller saved registers and insert spill // code for any caller saved registers that are modified. Also calculate // the MaxCallFrameSize and HasCalls variables for the function's frame // information and eliminates call frame pseudo instructions. calculateCallerSavedRegisters(Fn); // Add the code to save and restore the caller saved registers saveCallerSavedRegisters(Fn); // Allow the target machine to make final modifications to the function // before the frame layout is finalized. Fn.getTarget().getRegisterInfo()->processFunctionBeforeFrameFinalized(Fn); // Calculate actual frame offsets for all of the abstract stack objects... calculateFrameObjectOffsets(Fn); // Add prolog and epilog code to the function. This function is required // to align the stack frame as necessary for any stack variables or // called functions. Because of this, calculateCallerSavedRegisters // must be called before this function in order to set the HasCalls // and MaxCallFrameSize variables. insertPrologEpilogCode(Fn); // Replace all MO_FrameIndex operands with physical register references // and actual offsets. // replaceFrameIndices(Fn); RegsToSave.clear(); StackSlots.clear(); return true; } private: std::vector > RegsToSave; std::vector StackSlots; void calculateCallerSavedRegisters(MachineFunction &Fn); void saveCallerSavedRegisters(MachineFunction &Fn); void calculateFrameObjectOffsets(MachineFunction &Fn); void replaceFrameIndices(MachineFunction &Fn); void insertPrologEpilogCode(MachineFunction &Fn); }; } /// createPrologEpilogCodeInserter - This function returns a pass that inserts /// prolog and epilog code, and eliminates abstract frame references. /// FunctionPass *llvm::createPrologEpilogCodeInserter() { return new PEI(); } /// calculateCallerSavedRegisters - Scan the function for modified caller saved /// registers. Also calculate the MaxCallFrameSize and HasCalls variables for /// the function's frame information and eliminates call frame pseudo /// instructions. /// void PEI::calculateCallerSavedRegisters(MachineFunction &Fn) { const MRegisterInfo *RegInfo = Fn.getTarget().getRegisterInfo(); const TargetFrameInfo *TFI = Fn.getTarget().getFrameInfo(); const TargetInstrInfo &TII = *Fn.getTarget().getInstrInfo(); // Get the callee saved register list... const unsigned *CSRegs = RegInfo->getCalleeSaveRegs(); // Get the function call frame set-up and tear-down instruction opcode int FrameSetupOpcode = RegInfo->getCallFrameSetupOpcode(); int FrameDestroyOpcode = RegInfo->getCallFrameDestroyOpcode(); // Early exit for targets which have no callee saved registers and no call // frame setup/destroy pseudo instructions. if ((CSRegs == 0 || CSRegs[0] == 0) && FrameSetupOpcode == -1 && FrameDestroyOpcode == -1) return; unsigned MaxCallFrameSize = 0; bool HasCalls = false; for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) for (MachineBasicBlock::iterator I = BB->begin(); I != BB->end(); ) if (I->getOpcode() == FrameSetupOpcode || I->getOpcode() == FrameDestroyOpcode) { assert(I->getNumOperands() >= 1 && "Call Frame Setup/Destroy Pseudo" " instructions should have a single immediate argument!"); unsigned Size = I->getOperand(0).getImmedValue(); if (Size > MaxCallFrameSize) MaxCallFrameSize = Size; HasCalls = true; RegInfo->eliminateCallFramePseudoInstr(Fn, *BB, I++); } else { ++I; } MachineFrameInfo *FFI = Fn.getFrameInfo(); FFI->setHasCalls(HasCalls); FFI->setMaxCallFrameSize(MaxCallFrameSize); // Now figure out which *callee saved* registers are modified by the current // function, thus needing to be saved and restored in the prolog/epilog. // const bool *PhysRegsUsed = Fn.getUsedPhysregs(); const TargetRegisterClass* const *CSRegClasses = RegInfo->getCalleeSaveRegClasses(); for (unsigned i = 0; CSRegs[i]; ++i) { unsigned Reg = CSRegs[i]; if (PhysRegsUsed[Reg]) { // If the reg is modified, save it! RegsToSave.push_back(std::make_pair(Reg, CSRegClasses[i])); } else { for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg); *AliasSet; ++AliasSet) { // Check alias registers too. if (PhysRegsUsed[*AliasSet]) { RegsToSave.push_back(std::make_pair(Reg, CSRegClasses[i])); break; } } } } if (RegsToSave.empty()) return; // Early exit if no caller saved registers are modified! unsigned NumFixedSpillSlots; const std::pair *FixedSpillSlots = TFI->getCalleeSaveSpillSlots(NumFixedSpillSlots); // Now that we know which registers need to be saved and restored, allocate // stack slots for them. for (unsigned i = 0, e = RegsToSave.size(); i != e; ++i) { unsigned Reg = RegsToSave[i].first; const TargetRegisterClass *RC = RegsToSave[i].second; // Check to see if this physreg must be spilled to a particular stack slot // on this target. const std::pair *FixedSlot = FixedSpillSlots; while (FixedSlot != FixedSpillSlots+NumFixedSpillSlots && FixedSlot->first != Reg) ++FixedSlot; int FrameIdx; if (FixedSlot == FixedSpillSlots+NumFixedSpillSlots) { // Nope, just spill it anywhere convenient. FrameIdx = FFI->CreateStackObject(RC->getSize(), RC->getAlignment()); } else { // Spill it to the stack where we must. FrameIdx = FFI->CreateFixedObject(RC->getSize(), FixedSlot->second); } StackSlots.push_back(FrameIdx); } } /// saveCallerSavedRegisters - Insert spill code for any caller saved registers /// that are modified in the function. /// void PEI::saveCallerSavedRegisters(MachineFunction &Fn) { // Early exit if no caller saved registers are modified! if (RegsToSave.empty()) return; const MRegisterInfo *RegInfo = Fn.getTarget().getRegisterInfo(); // Now that we have a stack slot for each register to be saved, insert spill // code into the entry block. MachineBasicBlock *MBB = Fn.begin(); MachineBasicBlock::iterator I = MBB->begin(); for (unsigned i = 0, e = RegsToSave.size(); i != e; ++i) { // Insert the spill to the stack frame. RegInfo->storeRegToStackSlot(*MBB, I, RegsToSave[i].first, StackSlots[i], RegsToSave[i].second); } // Add code to restore the callee-save registers in each exiting block. const TargetInstrInfo &TII = *Fn.getTarget().getInstrInfo(); for (MachineFunction::iterator FI = Fn.begin(), E = Fn.end(); FI != E; ++FI) // If last instruction is a return instruction, add an epilogue. if (!FI->empty() && TII.isReturn(FI->back().getOpcode())) { MBB = FI; I = MBB->end(); --I; // Skip over all terminator instructions, which are part of the return // sequence. MachineBasicBlock::iterator I2 = I; while (I2 != MBB->begin() && TII.isTerminatorInstr((--I2)->getOpcode())) I = I2; bool AtStart = I == MBB->begin(); MachineBasicBlock::iterator BeforeI = I; if (!AtStart) --BeforeI; // Restore all registers immediately before the return and any terminators // that preceed it. for (unsigned i = 0, e = RegsToSave.size(); i != e; ++i) { RegInfo->loadRegFromStackSlot(*MBB, I, RegsToSave[i].first, StackSlots[i], RegsToSave[i].second); assert(I != MBB->begin() && "loadRegFromStackSlot didn't insert any code!"); // Insert in reverse order. loadRegFromStackSlot can insert multiple // instructions. if (AtStart) I = MBB->begin(); else { I = BeforeI; ++I; } } } } /// calculateFrameObjectOffsets - Calculate actual frame offsets for all of the /// abstract stack objects. /// void PEI::calculateFrameObjectOffsets(MachineFunction &Fn) { const TargetFrameInfo &TFI = *Fn.getTarget().getFrameInfo(); bool StackGrowsDown = TFI.getStackGrowthDirection() == TargetFrameInfo::StackGrowsDown; // Loop over all of the stack objects, assigning sequential addresses... MachineFrameInfo *FFI = Fn.getFrameInfo(); unsigned StackAlignment = TFI.getStackAlignment(); unsigned MaxAlign = 0; // Start at the beginning of the local area. // The Offset is the distance from the stack top in the direction // of stack growth -- so it's always positive. int Offset = TFI.getOffsetOfLocalArea(); if (StackGrowsDown) Offset = -Offset; assert(Offset >= 0 && "Local area offset should be in direction of stack growth"); // If there are fixed sized objects that are preallocated in the local area, // non-fixed objects can't be allocated right at the start of local area. // We currently don't support filling in holes in between fixed sized objects, // so we adjust 'Offset' to point to the end of last fixed sized // preallocated object. for (int i = FFI->getObjectIndexBegin(); i != 0; ++i) { int FixedOff; if (StackGrowsDown) { // The maximum distance from the stack pointer is at lower address of // the object -- which is given by offset. For down growing stack // the offset is negative, so we negate the offset to get the distance. FixedOff = -FFI->getObjectOffset(i); } else { // The maximum distance from the start pointer is at the upper // address of the object. FixedOff = FFI->getObjectOffset(i) + FFI->getObjectSize(i); } if (FixedOff > Offset) Offset = FixedOff; } for (unsigned i = 0, e = FFI->getObjectIndexEnd(); i != e; ++i) { // If stack grows down, we need to add size of find the lowest // address of the object. if (StackGrowsDown) Offset += FFI->getObjectSize(i); unsigned Align = FFI->getObjectAlignment(i); // If the alignment of this object is greater than that of the stack, then // increase the stack alignment to match. MaxAlign = std::max(MaxAlign, Align); // Adjust to alignment boundary Offset = (Offset+Align-1)/Align*Align; if (StackGrowsDown) { FFI->setObjectOffset(i, -Offset); // Set the computed offset } else { FFI->setObjectOffset(i, Offset); Offset += FFI->getObjectSize(i); } } // Align the final stack pointer offset, but only if there are calls in the // function. This ensures that any calls to subroutines have their stack // frames suitable aligned. if (FFI->hasCalls()) Offset = (Offset+StackAlignment-1)/StackAlignment*StackAlignment; // Set the final value of the stack pointer... FFI->setStackSize(Offset+TFI.getOffsetOfLocalArea()); // Remember the required stack alignment in case targets need it to perform // dynamic stack alignment. assert(FFI->getMaxAlignment() == MaxAlign && "Stack alignment calculation broken!"); } /// insertPrologEpilogCode - Scan the function for modified caller saved /// registers, insert spill code for these caller saved registers, then add /// prolog and epilog code to the function. /// void PEI::insertPrologEpilogCode(MachineFunction &Fn) { // Add prologue to the function... Fn.getTarget().getRegisterInfo()->emitPrologue(Fn); // Add epilogue to restore the callee-save registers in each exiting block const TargetInstrInfo &TII = *Fn.getTarget().getInstrInfo(); for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) { // If last instruction is a return instruction, add an epilogue if (!I->empty() && TII.isReturn(I->back().getOpcode())) Fn.getTarget().getRegisterInfo()->emitEpilogue(Fn, *I); } } /// replaceFrameIndices - Replace all MO_FrameIndex operands with physical /// register references and actual offsets. /// void PEI::replaceFrameIndices(MachineFunction &Fn) { if (!Fn.getFrameInfo()->hasStackObjects()) return; // Nothing to do? const TargetMachine &TM = Fn.getTarget(); assert(TM.getRegisterInfo() && "TM::getRegisterInfo() must be implemented!"); const MRegisterInfo &MRI = *TM.getRegisterInfo(); for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) for (MachineBasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) if (I->getOperand(i).isFrameIndex()) { // If this instruction has a FrameIndex operand, we need to use that // target machine register info object to eliminate it. MRI.eliminateFrameIndex(I); break; } }