//===-- DwarfEHPrepare - Prepare exception handling for code generation ---===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass mulches exception handling code into a form adapted to code // generation. Required if using dwarf exception handling. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "dwarfehprepare" #include "llvm/Function.h" #include "llvm/Instructions.h" #include "llvm/IntrinsicInst.h" #include "llvm/Module.h" #include "llvm/Pass.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/Dominators.h" #include "llvm/CodeGen/Passes.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/Support/CallSite.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/PromoteMemToReg.h" using namespace llvm; STATISTIC(NumLandingPadsSplit, "Number of landing pads split"); STATISTIC(NumUnwindsLowered, "Number of unwind instructions lowered"); STATISTIC(NumExceptionValuesMoved, "Number of eh.exception calls moved"); STATISTIC(NumStackTempsIntroduced, "Number of stack temporaries introduced"); namespace { class DwarfEHPrepare : public FunctionPass { const TargetMachine *TM; const TargetLowering *TLI; bool CompileFast; // The eh.exception intrinsic. Function *ExceptionValueIntrinsic; // The eh.selector intrinsic. Function *SelectorIntrinsic; // _Unwind_Resume_or_Rethrow call. Constant *URoR; // The EH language-specific catch-all type. GlobalVariable *EHCatchAllValue; // _Unwind_Resume or the target equivalent. Constant *RewindFunction; // Dominator info is used when turning stack temporaries into registers. DominatorTree *DT; DominanceFrontier *DF; // The function we are running on. Function *F; // The landing pads for this function. typedef SmallPtrSet BBSet; BBSet LandingPads; // Stack temporary used to hold eh.exception values. AllocaInst *ExceptionValueVar; bool NormalizeLandingPads(); bool LowerUnwinds(); bool MoveExceptionValueCalls(); bool FinishStackTemporaries(); bool PromoteStackTemporaries(); Instruction *CreateExceptionValueCall(BasicBlock *BB); Instruction *CreateValueLoad(BasicBlock *BB); /// CreateReadOfExceptionValue - Return the result of the eh.exception /// intrinsic by calling the intrinsic if in a landing pad, or loading it /// from the exception value variable otherwise. Instruction *CreateReadOfExceptionValue(BasicBlock *BB) { return LandingPads.count(BB) ? CreateExceptionValueCall(BB) : CreateValueLoad(BB); } /// CleanupSelectors - Any remaining eh.selector intrinsic calls which still /// use the "llvm.eh.catch.all.value" call need to convert to using its /// initializer instead. bool CleanupSelectors(SmallPtrSet &Sels); bool HasCatchAllInSelector(IntrinsicInst *); /// FindAllCleanupSelectors - Find all eh.selector calls that are clean-ups. void FindAllCleanupSelectors(SmallPtrSet &Sels, SmallPtrSet &CatchAllSels); /// FindAllURoRInvokes - Find all URoR invokes in the function. void FindAllURoRInvokes(SmallPtrSet &URoRInvokes); /// HandleURoRInvokes - Handle invokes of "_Unwind_Resume_or_Rethrow" /// calls. The "unwind" part of these invokes jump to a landing pad within /// the current function. This is a candidate to merge the selector /// associated with the URoR invoke with the one from the URoR's landing /// pad. bool HandleURoRInvokes(); /// FindSelectorAndURoR - Find the eh.selector call and URoR call associated /// with the eh.exception call. This recursively looks past instructions /// which don't change the EH pointer value, like casts or PHI nodes. bool FindSelectorAndURoR(Instruction *Inst, bool &URoRInvoke, SmallPtrSet &SelCalls); /// DoMem2RegPromotion - Take an alloca call and promote it from memory to a /// register. bool DoMem2RegPromotion(Value *V) { AllocaInst *AI = dyn_cast(V); if (!AI || !isAllocaPromotable(AI)) return false; // Turn the alloca into a register. std::vector Allocas(1, AI); PromoteMemToReg(Allocas, *DT, *DF); return true; } /// PromoteStoreInst - Perform Mem2Reg on a StoreInst. bool PromoteStoreInst(StoreInst *SI) { if (!SI || !DT || !DF) return false; if (DoMem2RegPromotion(SI->getOperand(1))) return true; return false; } /// PromoteEHPtrStore - Promote the storing of an EH pointer into a /// register. This should get rid of the store and subsequent loads. bool PromoteEHPtrStore(IntrinsicInst *II) { if (!DT || !DF) return false; bool Changed = false; StoreInst *SI; while (1) { SI = 0; for (Value::use_iterator I = II->use_begin(), E = II->use_end(); I != E; ++I) { SI = dyn_cast(*I); if (SI) break; } if (!PromoteStoreInst(SI)) break; Changed = true; } return Changed; } public: static char ID; // Pass identification, replacement for typeid. DwarfEHPrepare(const TargetMachine *tm, bool fast) : FunctionPass(ID), TM(tm), TLI(TM->getTargetLowering()), CompileFast(fast), ExceptionValueIntrinsic(0), SelectorIntrinsic(0), URoR(0), EHCatchAllValue(0), RewindFunction(0) {} virtual bool runOnFunction(Function &Fn); // getAnalysisUsage - We need dominance frontiers for memory promotion. virtual void getAnalysisUsage(AnalysisUsage &AU) const { if (!CompileFast) AU.addRequired(); AU.addPreserved(); if (!CompileFast) AU.addRequired(); AU.addPreserved(); } const char *getPassName() const { return "Exception handling preparation"; } }; } // end anonymous namespace char DwarfEHPrepare::ID = 0; FunctionPass *llvm::createDwarfEHPass(const TargetMachine *tm, bool fast) { return new DwarfEHPrepare(tm, fast); } /// HasCatchAllInSelector - Return true if the intrinsic instruction has a /// catch-all. bool DwarfEHPrepare::HasCatchAllInSelector(IntrinsicInst *II) { if (!EHCatchAllValue) return false; unsigned ArgIdx = II->getNumArgOperands() - 1; GlobalVariable *GV = dyn_cast(II->getArgOperand(ArgIdx)); return GV == EHCatchAllValue; } /// FindAllCleanupSelectors - Find all eh.selector calls that are clean-ups. void DwarfEHPrepare:: FindAllCleanupSelectors(SmallPtrSet &Sels, SmallPtrSet &CatchAllSels) { for (Value::use_iterator I = SelectorIntrinsic->use_begin(), E = SelectorIntrinsic->use_end(); I != E; ++I) { IntrinsicInst *II = cast(*I); if (II->getParent()->getParent() != F) continue; if (!HasCatchAllInSelector(II)) Sels.insert(II); else CatchAllSels.insert(II); } } /// FindAllURoRInvokes - Find all URoR invokes in the function. void DwarfEHPrepare:: FindAllURoRInvokes(SmallPtrSet &URoRInvokes) { for (Value::use_iterator I = URoR->use_begin(), E = URoR->use_end(); I != E; ++I) { if (InvokeInst *II = dyn_cast(*I)) URoRInvokes.insert(II); } } /// CleanupSelectors - Any remaining eh.selector intrinsic calls which still use /// the "llvm.eh.catch.all.value" call need to convert to using its /// initializer instead. bool DwarfEHPrepare::CleanupSelectors(SmallPtrSet &Sels) { if (!EHCatchAllValue) return false; if (!SelectorIntrinsic) { SelectorIntrinsic = Intrinsic::getDeclaration(F->getParent(), Intrinsic::eh_selector); if (!SelectorIntrinsic) return false; } bool Changed = false; for (SmallPtrSet::iterator I = Sels.begin(), E = Sels.end(); I != E; ++I) { IntrinsicInst *Sel = *I; // Index of the "llvm.eh.catch.all.value" variable. unsigned OpIdx = Sel->getNumArgOperands() - 1; GlobalVariable *GV = dyn_cast(Sel->getArgOperand(OpIdx)); if (GV != EHCatchAllValue) continue; Sel->setArgOperand(OpIdx, EHCatchAllValue->getInitializer()); Changed = true; } return Changed; } /// FindSelectorAndURoR - Find the eh.selector call associated with the /// eh.exception call. And indicate if there is a URoR "invoke" associated with /// the eh.exception call. This recursively looks past instructions which don't /// change the EH pointer value, like casts or PHI nodes. bool DwarfEHPrepare::FindSelectorAndURoR(Instruction *Inst, bool &URoRInvoke, SmallPtrSet &SelCalls) { SmallPtrSet SeenPHIs; bool Changed = false; restart: for (Value::use_iterator I = Inst->use_begin(), E = Inst->use_end(); I != E; ++I) { Instruction *II = dyn_cast(*I); if (!II || II->getParent()->getParent() != F) continue; if (IntrinsicInst *Sel = dyn_cast(II)) { if (Sel->getIntrinsicID() == Intrinsic::eh_selector) SelCalls.insert(Sel); } else if (InvokeInst *Invoke = dyn_cast(II)) { if (Invoke->getCalledFunction() == URoR) URoRInvoke = true; } else if (CastInst *CI = dyn_cast(II)) { Changed |= FindSelectorAndURoR(CI, URoRInvoke, SelCalls); } else if (StoreInst *SI = dyn_cast(II)) { if (!PromoteStoreInst(SI)) continue; Changed = true; SeenPHIs.clear(); goto restart; // Uses may have changed, restart loop. } else if (PHINode *PN = dyn_cast(II)) { if (SeenPHIs.insert(PN)) // Don't process a PHI node more than once. Changed |= FindSelectorAndURoR(PN, URoRInvoke, SelCalls); } } return Changed; } /// HandleURoRInvokes - Handle invokes of "_Unwind_Resume_or_Rethrow" calls. The /// "unwind" part of these invokes jump to a landing pad within the current /// function. This is a candidate to merge the selector associated with the URoR /// invoke with the one from the URoR's landing pad. bool DwarfEHPrepare::HandleURoRInvokes() { if (!EHCatchAllValue) { EHCatchAllValue = F->getParent()->getNamedGlobal("llvm.eh.catch.all.value"); if (!EHCatchAllValue) return false; } if (!SelectorIntrinsic) { SelectorIntrinsic = Intrinsic::getDeclaration(F->getParent(), Intrinsic::eh_selector); if (!SelectorIntrinsic) return false; } SmallPtrSet Sels; SmallPtrSet CatchAllSels; FindAllCleanupSelectors(Sels, CatchAllSels); if (!DT) // We require DominatorTree information. return CleanupSelectors(CatchAllSels); if (!URoR) { URoR = F->getParent()->getFunction("_Unwind_Resume_or_Rethrow"); if (!URoR) return CleanupSelectors(CatchAllSels); } SmallPtrSet URoRInvokes; FindAllURoRInvokes(URoRInvokes); SmallPtrSet SelsToConvert; for (SmallPtrSet::iterator SI = Sels.begin(), SE = Sels.end(); SI != SE; ++SI) { const BasicBlock *SelBB = (*SI)->getParent(); for (SmallPtrSet::iterator UI = URoRInvokes.begin(), UE = URoRInvokes.end(); UI != UE; ++UI) { const BasicBlock *URoRBB = (*UI)->getParent(); if (DT->dominates(SelBB, URoRBB)) { SelsToConvert.insert(*SI); break; } } } bool Changed = false; if (Sels.size() != SelsToConvert.size()) { // If we haven't been able to convert all of the clean-up selectors, then // loop through the slow way to see if they still need to be converted. if (!ExceptionValueIntrinsic) { ExceptionValueIntrinsic = Intrinsic::getDeclaration(F->getParent(), Intrinsic::eh_exception); if (!ExceptionValueIntrinsic) return CleanupSelectors(CatchAllSels); } for (Value::use_iterator I = ExceptionValueIntrinsic->use_begin(), E = ExceptionValueIntrinsic->use_end(); I != E; ++I) { IntrinsicInst *EHPtr = dyn_cast(*I); if (!EHPtr || EHPtr->getParent()->getParent() != F) continue; Changed |= PromoteEHPtrStore(EHPtr); bool URoRInvoke = false; SmallPtrSet SelCalls; Changed |= FindSelectorAndURoR(EHPtr, URoRInvoke, SelCalls); if (URoRInvoke) { // This EH pointer is being used by an invoke of an URoR instruction and // an eh.selector intrinsic call. If the eh.selector is a 'clean-up', we // need to convert it to a 'catch-all'. for (SmallPtrSet::iterator SI = SelCalls.begin(), SE = SelCalls.end(); SI != SE; ++SI) if (!HasCatchAllInSelector(*SI)) SelsToConvert.insert(*SI); } } } if (!SelsToConvert.empty()) { // Convert all clean-up eh.selectors, which are associated with "invokes" of // URoR calls, into catch-all eh.selectors. Changed = true; for (SmallPtrSet::iterator SI = SelsToConvert.begin(), SE = SelsToConvert.end(); SI != SE; ++SI) { IntrinsicInst *II = *SI; // Use the exception object pointer and the personality function // from the original selector. CallSite CS(II); IntrinsicInst::op_iterator I = CS.arg_begin(); IntrinsicInst::op_iterator E = CS.arg_end(); IntrinsicInst::op_iterator B = prior(E); // Exclude last argument if it is an integer. if (isa(B)) E = B; // Add exception object pointer (front). // Add personality function (next). // Add in any filter IDs (rest). SmallVector Args(I, E); Args.push_back(EHCatchAllValue->getInitializer()); // Catch-all indicator. CallInst *NewSelector = CallInst::Create(SelectorIntrinsic, Args.begin(), Args.end(), "eh.sel.catch.all", II); NewSelector->setTailCall(II->isTailCall()); NewSelector->setAttributes(II->getAttributes()); NewSelector->setCallingConv(II->getCallingConv()); II->replaceAllUsesWith(NewSelector); II->eraseFromParent(); } } Changed |= CleanupSelectors(CatchAllSels); return Changed; } /// NormalizeLandingPads - Normalize and discover landing pads, noting them /// in the LandingPads set. A landing pad is normal if the only CFG edges /// that end at it are unwind edges from invoke instructions. If we inlined /// through an invoke we could have a normal branch from the previous /// unwind block through to the landing pad for the original invoke. /// Abnormal landing pads are fixed up by redirecting all unwind edges to /// a new basic block which falls through to the original. bool DwarfEHPrepare::NormalizeLandingPads() { bool Changed = false; const MCAsmInfo *MAI = TM->getMCAsmInfo(); bool usingSjLjEH = MAI->getExceptionHandlingType() == ExceptionHandling::SjLj; for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) { TerminatorInst *TI = I->getTerminator(); if (!isa(TI)) continue; BasicBlock *LPad = TI->getSuccessor(1); // Skip landing pads that have already been normalized. if (LandingPads.count(LPad)) continue; // Check that only invoke unwind edges end at the landing pad. bool OnlyUnwoundTo = true; bool SwitchOK = usingSjLjEH; for (pred_iterator PI = pred_begin(LPad), PE = pred_end(LPad); PI != PE; ++PI) { TerminatorInst *PT = (*PI)->getTerminator(); // The SjLj dispatch block uses a switch instruction. This is effectively // an unwind edge, so we can disregard it here. There will only ever // be one dispatch, however, so if there are multiple switches, one // of them truly is a normal edge, not an unwind edge. if (SwitchOK && isa(PT)) { SwitchOK = false; continue; } if (!isa(PT) || LPad == PT->getSuccessor(0)) { OnlyUnwoundTo = false; break; } } if (OnlyUnwoundTo) { // Only unwind edges lead to the landing pad. Remember the landing pad. LandingPads.insert(LPad); continue; } // At least one normal edge ends at the landing pad. Redirect the unwind // edges to a new basic block which falls through into this one. // Create the new basic block. BasicBlock *NewBB = BasicBlock::Create(F->getContext(), LPad->getName() + "_unwind_edge"); // Insert it into the function right before the original landing pad. LPad->getParent()->getBasicBlockList().insert(LPad, NewBB); // Redirect unwind edges from the original landing pad to NewBB. for (pred_iterator PI = pred_begin(LPad), PE = pred_end(LPad); PI != PE; ) { TerminatorInst *PT = (*PI++)->getTerminator(); if (isa(PT) && PT->getSuccessor(1) == LPad) // Unwind to the new block. PT->setSuccessor(1, NewBB); } // If there are any PHI nodes in LPad, we need to update them so that they // merge incoming values from NewBB instead. for (BasicBlock::iterator II = LPad->begin(); isa(II); ++II) { PHINode *PN = cast(II); pred_iterator PB = pred_begin(NewBB), PE = pred_end(NewBB); // Check to see if all of the values coming in via unwind edges are the // same. If so, we don't need to create a new PHI node. Value *InVal = PN->getIncomingValueForBlock(*PB); for (pred_iterator PI = PB; PI != PE; ++PI) { if (PI != PB && InVal != PN->getIncomingValueForBlock(*PI)) { InVal = 0; break; } } if (InVal == 0) { // Different unwind edges have different values. Create a new PHI node // in NewBB. PHINode *NewPN = PHINode::Create(PN->getType(), PN->getName()+".unwind", NewBB); // Add an entry for each unwind edge, using the value from the old PHI. for (pred_iterator PI = PB; PI != PE; ++PI) NewPN->addIncoming(PN->getIncomingValueForBlock(*PI), *PI); // Now use this new PHI as the common incoming value for NewBB in PN. InVal = NewPN; } // Revector exactly one entry in the PHI node to come from NewBB // and delete all other entries that come from unwind edges. If // there are both normal and unwind edges from the same predecessor, // this leaves an entry for the normal edge. for (pred_iterator PI = PB; PI != PE; ++PI) PN->removeIncomingValue(*PI); PN->addIncoming(InVal, NewBB); } // Add a fallthrough from NewBB to the original landing pad. BranchInst::Create(LPad, NewBB); // Now update DominatorTree and DominanceFrontier analysis information. if (DT) DT->splitBlock(NewBB); if (DF) DF->splitBlock(NewBB); // Remember the newly constructed landing pad. The original landing pad // LPad is no longer a landing pad now that all unwind edges have been // revectored to NewBB. LandingPads.insert(NewBB); ++NumLandingPadsSplit; Changed = true; } return Changed; } /// LowerUnwinds - Turn unwind instructions into calls to _Unwind_Resume, /// rethrowing any previously caught exception. This will crash horribly /// at runtime if there is no such exception: using unwind to throw a new /// exception is currently not supported. bool DwarfEHPrepare::LowerUnwinds() { SmallVector UnwindInsts; for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) { TerminatorInst *TI = I->getTerminator(); if (isa(TI)) UnwindInsts.push_back(TI); } if (UnwindInsts.empty()) return false; // Find the rewind function if we didn't already. if (!RewindFunction) { LLVMContext &Ctx = UnwindInsts[0]->getContext(); std::vector Params(1, Type::getInt8PtrTy(Ctx)); FunctionType *FTy = FunctionType::get(Type::getVoidTy(Ctx), Params, false); const char *RewindName = TLI->getLibcallName(RTLIB::UNWIND_RESUME); RewindFunction = F->getParent()->getOrInsertFunction(RewindName, FTy); } bool Changed = false; for (SmallVectorImpl::iterator I = UnwindInsts.begin(), E = UnwindInsts.end(); I != E; ++I) { TerminatorInst *TI = *I; // Replace the unwind instruction with a call to _Unwind_Resume (or the // appropriate target equivalent) followed by an UnreachableInst. // Create the call... CallInst *CI = CallInst::Create(RewindFunction, CreateReadOfExceptionValue(TI->getParent()), "", TI); CI->setCallingConv(TLI->getLibcallCallingConv(RTLIB::UNWIND_RESUME)); // ...followed by an UnreachableInst. new UnreachableInst(TI->getContext(), TI); // Nuke the unwind instruction. TI->eraseFromParent(); ++NumUnwindsLowered; Changed = true; } return Changed; } /// MoveExceptionValueCalls - Ensure that eh.exception is only ever called from /// landing pads by replacing calls outside of landing pads with loads from a /// stack temporary. Move eh.exception calls inside landing pads to the start /// of the landing pad (optional, but may make things simpler for later passes). bool DwarfEHPrepare::MoveExceptionValueCalls() { // If the eh.exception intrinsic is not declared in the module then there is // nothing to do. Speed up compilation by checking for this common case. if (!ExceptionValueIntrinsic && !F->getParent()->getFunction(Intrinsic::getName(Intrinsic::eh_exception))) return false; bool Changed = false; for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) { for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E;) if (IntrinsicInst *CI = dyn_cast(II++)) if (CI->getIntrinsicID() == Intrinsic::eh_exception) { if (!CI->use_empty()) { Value *ExceptionValue = CreateReadOfExceptionValue(BB); if (CI == ExceptionValue) { // The call was at the start of a landing pad - leave it alone. assert(LandingPads.count(BB) && "Created eh.exception call outside landing pad!"); continue; } CI->replaceAllUsesWith(ExceptionValue); } CI->eraseFromParent(); ++NumExceptionValuesMoved; Changed = true; } } return Changed; } /// FinishStackTemporaries - If we introduced a stack variable to hold the /// exception value then initialize it in each landing pad. bool DwarfEHPrepare::FinishStackTemporaries() { if (!ExceptionValueVar) // Nothing to do. return false; bool Changed = false; // Make sure that there is a store of the exception value at the start of // each landing pad. for (BBSet::iterator LI = LandingPads.begin(), LE = LandingPads.end(); LI != LE; ++LI) { Instruction *ExceptionValue = CreateReadOfExceptionValue(*LI); Instruction *Store = new StoreInst(ExceptionValue, ExceptionValueVar); Store->insertAfter(ExceptionValue); Changed = true; } return Changed; } /// PromoteStackTemporaries - Turn any stack temporaries we introduced into /// registers if possible. bool DwarfEHPrepare::PromoteStackTemporaries() { if (ExceptionValueVar && DT && DF && isAllocaPromotable(ExceptionValueVar)) { // Turn the exception temporary into registers and phi nodes if possible. std::vector Allocas(1, ExceptionValueVar); PromoteMemToReg(Allocas, *DT, *DF); return true; } return false; } /// CreateExceptionValueCall - Insert a call to the eh.exception intrinsic at /// the start of the basic block (unless there already is one, in which case /// the existing call is returned). Instruction *DwarfEHPrepare::CreateExceptionValueCall(BasicBlock *BB) { Instruction *Start = BB->getFirstNonPHIOrDbg(); // Is this a call to eh.exception? if (IntrinsicInst *CI = dyn_cast(Start)) if (CI->getIntrinsicID() == Intrinsic::eh_exception) // Reuse the existing call. return Start; // Find the eh.exception intrinsic if we didn't already. if (!ExceptionValueIntrinsic) ExceptionValueIntrinsic = Intrinsic::getDeclaration(F->getParent(), Intrinsic::eh_exception); // Create the call. return CallInst::Create(ExceptionValueIntrinsic, "eh.value.call", Start); } /// CreateValueLoad - Insert a load of the exception value stack variable /// (creating it if necessary) at the start of the basic block (unless /// there already is a load, in which case the existing load is returned). Instruction *DwarfEHPrepare::CreateValueLoad(BasicBlock *BB) { Instruction *Start = BB->getFirstNonPHIOrDbg(); // Is this a load of the exception temporary? if (ExceptionValueVar) if (LoadInst* LI = dyn_cast(Start)) if (LI->getPointerOperand() == ExceptionValueVar) // Reuse the existing load. return Start; // Create the temporary if we didn't already. if (!ExceptionValueVar) { ExceptionValueVar = new AllocaInst(PointerType::getUnqual( Type::getInt8Ty(BB->getContext())), "eh.value", F->begin()->begin()); ++NumStackTempsIntroduced; } // Load the value. return new LoadInst(ExceptionValueVar, "eh.value.load", Start); } bool DwarfEHPrepare::runOnFunction(Function &Fn) { bool Changed = false; // Initialize internal state. DT = getAnalysisIfAvailable(); DF = getAnalysisIfAvailable(); ExceptionValueVar = 0; F = &Fn; // Ensure that only unwind edges end at landing pads (a landing pad is a // basic block where an invoke unwind edge ends). Changed |= NormalizeLandingPads(); // Turn unwind instructions into libcalls. Changed |= LowerUnwinds(); // TODO: Move eh.selector calls to landing pads and combine them. // Move eh.exception calls to landing pads. Changed |= MoveExceptionValueCalls(); // Initialize any stack temporaries we introduced. Changed |= FinishStackTemporaries(); // Turn any stack temporaries into registers if possible. if (!CompileFast) Changed |= PromoteStackTemporaries(); Changed |= HandleURoRInvokes(); LandingPads.clear(); return Changed; }