//===-- AlphaISelDAGToDAG.cpp - Alpha pattern matching inst selector ------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines a pattern matching instruction selector for Alpha, // converting from a legalized dag to a Alpha dag. // //===----------------------------------------------------------------------===// #include "Alpha.h" #include "AlphaTargetMachine.h" #include "AlphaISelLowering.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/SelectionDAGISel.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/GlobalValue.h" #include "llvm/Intrinsics.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/MathExtras.h" #include #include #include using namespace llvm; namespace { //===--------------------------------------------------------------------===// /// AlphaDAGToDAGISel - Alpha specific code to select Alpha machine /// instructions for SelectionDAG operations. class AlphaDAGToDAGISel : public SelectionDAGISel { AlphaTargetLowering AlphaLowering; static const int64_t IMM_LOW = -32768; static const int64_t IMM_HIGH = 32767; static const int64_t IMM_MULT = 65536; static const int64_t IMM_FULLHIGH = IMM_HIGH + IMM_HIGH * IMM_MULT; static const int64_t IMM_FULLLOW = IMM_LOW + IMM_LOW * IMM_MULT; static int64_t get_ldah16(int64_t x) { int64_t y = x / IMM_MULT; if (x % IMM_MULT > IMM_HIGH) ++y; return y; } static int64_t get_lda16(int64_t x) { return x - get_ldah16(x) * IMM_MULT; } /// get_zapImm - Return a zap mask if X is a valid immediate for a zapnot /// instruction (if not, return 0). Note that this code accepts partial /// zap masks. For example (and LHS, 1) is a valid zap, as long we know /// that the bits 1-7 of LHS are already zero. If LHS is non-null, we are /// in checking mode. If LHS is null, we assume that the mask has already /// been validated before. uint64_t get_zapImm(SDValue LHS, uint64_t Constant) { uint64_t BitsToCheck = 0; unsigned Result = 0; for (unsigned i = 0; i != 8; ++i) { if (((Constant >> 8*i) & 0xFF) == 0) { // nothing to do. } else { Result |= 1 << i; if (((Constant >> 8*i) & 0xFF) == 0xFF) { // If the entire byte is set, zapnot the byte. } else if (LHS.getNode() == 0) { // Otherwise, if the mask was previously validated, we know its okay // to zapnot this entire byte even though all the bits aren't set. } else { // Otherwise we don't know that the it's okay to zapnot this entire // byte. Only do this iff we can prove that the missing bits are // already null, so the bytezap doesn't need to really null them. BitsToCheck |= ~Constant & (0xFF << 8*i); } } } // If there are missing bits in a byte (for example, X & 0xEF00), check to // see if the missing bits (0x1000) are already known zero if not, the zap // isn't okay to do, as it won't clear all the required bits. if (BitsToCheck && !CurDAG->MaskedValueIsZero(LHS, APInt(LHS.getValueSizeInBits(), BitsToCheck))) return 0; return Result; } static uint64_t get_zapImm(uint64_t x) { unsigned build = 0; for(int i = 0; i != 8; ++i) { if ((x & 0x00FF) == 0x00FF) build |= 1 << i; else if ((x & 0x00FF) != 0) return 0; x >>= 8; } return build; } static uint64_t getNearPower2(uint64_t x) { if (!x) return 0; unsigned at = CountLeadingZeros_64(x); uint64_t complow = 1 << (63 - at); uint64_t comphigh = 1 << (64 - at); //cerr << x << ":" << complow << ":" << comphigh << "\n"; if (abs(complow - x) <= abs(comphigh - x)) return complow; else return comphigh; } static bool chkRemNearPower2(uint64_t x, uint64_t r, bool swap) { uint64_t y = getNearPower2(x); if (swap) return (y - x) == r; else return (x - y) == r; } static bool isFPZ(SDValue N) { ConstantFPSDNode *CN = dyn_cast(N); return (CN && (CN->getValueAPF().isZero())); } static bool isFPZn(SDValue N) { ConstantFPSDNode *CN = dyn_cast(N); return (CN && CN->getValueAPF().isNegZero()); } static bool isFPZp(SDValue N) { ConstantFPSDNode *CN = dyn_cast(N); return (CN && CN->getValueAPF().isPosZero()); } public: explicit AlphaDAGToDAGISel(AlphaTargetMachine &TM) : SelectionDAGISel(AlphaLowering), AlphaLowering(*TM.getTargetLowering()) {} /// getI64Imm - Return a target constant with the specified value, of type /// i64. inline SDValue getI64Imm(int64_t Imm) { return CurDAG->getTargetConstant(Imm, MVT::i64); } // Select - Convert the specified operand from a target-independent to a // target-specific node if it hasn't already been changed. SDNode *Select(SDValue Op); /// InstructionSelect - This callback is invoked by /// SelectionDAGISel when it has created a SelectionDAG for us to codegen. virtual void InstructionSelect(); virtual const char *getPassName() const { return "Alpha DAG->DAG Pattern Instruction Selection"; } /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for /// inline asm expressions. virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode, std::vector &OutOps) { SDValue Op0; switch (ConstraintCode) { default: return true; case 'm': // memory Op0 = Op; AddToISelQueue(Op0); break; } OutOps.push_back(Op0); return false; } // Include the pieces autogenerated from the target description. #include "AlphaGenDAGISel.inc" private: SDValue getGlobalBaseReg(); SDValue getGlobalRetAddr(); void SelectCALL(SDValue Op); }; } /// getGlobalBaseReg - Output the instructions required to put the /// GOT address into a register. /// SDValue AlphaDAGToDAGISel::getGlobalBaseReg() { unsigned GP = 0; for(MachineRegisterInfo::livein_iterator ii = RegInfo->livein_begin(), ee = RegInfo->livein_end(); ii != ee; ++ii) if (ii->first == Alpha::R29) { GP = ii->second; break; } assert(GP && "GOT PTR not in liveins"); return CurDAG->getCopyFromReg(CurDAG->getEntryNode(), GP, MVT::i64); } /// getRASaveReg - Grab the return address /// SDValue AlphaDAGToDAGISel::getGlobalRetAddr() { unsigned RA = 0; for(MachineRegisterInfo::livein_iterator ii = RegInfo->livein_begin(), ee = RegInfo->livein_end(); ii != ee; ++ii) if (ii->first == Alpha::R26) { RA = ii->second; break; } assert(RA && "RA PTR not in liveins"); return CurDAG->getCopyFromReg(CurDAG->getEntryNode(), RA, MVT::i64); } /// InstructionSelect - This callback is invoked by /// SelectionDAGISel when it has created a SelectionDAG for us to codegen. void AlphaDAGToDAGISel::InstructionSelect() { DEBUG(BB->dump()); // Select target instructions for the DAG. SelectRoot(); CurDAG->RemoveDeadNodes(); } // Select - Convert the specified operand from a target-independent to a // target-specific node if it hasn't already been changed. SDNode *AlphaDAGToDAGISel::Select(SDValue Op) { SDNode *N = Op.getNode(); if (N->isMachineOpcode()) { return NULL; // Already selected. } switch (N->getOpcode()) { default: break; case AlphaISD::CALL: SelectCALL(Op); return NULL; case ISD::FrameIndex: { int FI = cast(N)->getIndex(); return CurDAG->SelectNodeTo(N, Alpha::LDA, MVT::i64, CurDAG->getTargetFrameIndex(FI, MVT::i32), getI64Imm(0)); } case ISD::GLOBAL_OFFSET_TABLE: { SDValue Result = getGlobalBaseReg(); ReplaceUses(Op, Result); return NULL; } case AlphaISD::GlobalRetAddr: { SDValue Result = getGlobalRetAddr(); ReplaceUses(Op, Result); return NULL; } case AlphaISD::DivCall: { SDValue Chain = CurDAG->getEntryNode(); SDValue N0 = Op.getOperand(0); SDValue N1 = Op.getOperand(1); SDValue N2 = Op.getOperand(2); AddToISelQueue(N0); AddToISelQueue(N1); AddToISelQueue(N2); Chain = CurDAG->getCopyToReg(Chain, Alpha::R24, N1, SDValue(0,0)); Chain = CurDAG->getCopyToReg(Chain, Alpha::R25, N2, Chain.getValue(1)); Chain = CurDAG->getCopyToReg(Chain, Alpha::R27, N0, Chain.getValue(1)); SDNode *CNode = CurDAG->getTargetNode(Alpha::JSRs, MVT::Other, MVT::Flag, Chain, Chain.getValue(1)); Chain = CurDAG->getCopyFromReg(Chain, Alpha::R27, MVT::i64, SDValue(CNode, 1)); return CurDAG->SelectNodeTo(N, Alpha::BISr, MVT::i64, Chain, Chain); } case ISD::READCYCLECOUNTER: { SDValue Chain = N->getOperand(0); AddToISelQueue(Chain); //Select chain return CurDAG->getTargetNode(Alpha::RPCC, MVT::i64, MVT::Other, Chain); } case ISD::Constant: { uint64_t uval = cast(N)->getZExtValue(); if (uval == 0) { SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), Alpha::R31, MVT::i64); ReplaceUses(Op, Result); return NULL; } int64_t val = (int64_t)uval; int32_t val32 = (int32_t)val; if (val <= IMM_HIGH + IMM_HIGH * IMM_MULT && val >= IMM_LOW + IMM_LOW * IMM_MULT) break; //(LDAH (LDA)) if ((uval >> 32) == 0 && //empty upper bits val32 <= IMM_HIGH + IMM_HIGH * IMM_MULT) // val32 >= IMM_LOW + IMM_LOW * IMM_MULT) //always true break; //(zext (LDAH (LDA))) //Else use the constant pool ConstantInt *C = ConstantInt::get(Type::Int64Ty, uval); SDValue CPI = CurDAG->getTargetConstantPool(C, MVT::i64); SDNode *Tmp = CurDAG->getTargetNode(Alpha::LDAHr, MVT::i64, CPI, getGlobalBaseReg()); return CurDAG->SelectNodeTo(N, Alpha::LDQr, MVT::i64, MVT::Other, CPI, SDValue(Tmp, 0), CurDAG->getEntryNode()); } case ISD::TargetConstantFP: { ConstantFPSDNode *CN = cast(N); bool isDouble = N->getValueType(0) == MVT::f64; MVT T = isDouble ? MVT::f64 : MVT::f32; if (CN->getValueAPF().isPosZero()) { return CurDAG->SelectNodeTo(N, isDouble ? Alpha::CPYST : Alpha::CPYSS, T, CurDAG->getRegister(Alpha::F31, T), CurDAG->getRegister(Alpha::F31, T)); } else if (CN->getValueAPF().isNegZero()) { return CurDAG->SelectNodeTo(N, isDouble ? Alpha::CPYSNT : Alpha::CPYSNS, T, CurDAG->getRegister(Alpha::F31, T), CurDAG->getRegister(Alpha::F31, T)); } else { abort(); } break; } case ISD::SETCC: if (N->getOperand(0).getNode()->getValueType(0).isFloatingPoint()) { ISD::CondCode CC = cast(N->getOperand(2))->get(); unsigned Opc = Alpha::WTF; bool rev = false; bool inv = false; switch(CC) { default: DEBUG(N->dump(CurDAG)); assert(0 && "Unknown FP comparison!"); case ISD::SETEQ: case ISD::SETOEQ: case ISD::SETUEQ: Opc = Alpha::CMPTEQ; break; case ISD::SETLT: case ISD::SETOLT: case ISD::SETULT: Opc = Alpha::CMPTLT; break; case ISD::SETLE: case ISD::SETOLE: case ISD::SETULE: Opc = Alpha::CMPTLE; break; case ISD::SETGT: case ISD::SETOGT: case ISD::SETUGT: Opc = Alpha::CMPTLT; rev = true; break; case ISD::SETGE: case ISD::SETOGE: case ISD::SETUGE: Opc = Alpha::CMPTLE; rev = true; break; case ISD::SETNE: case ISD::SETONE: case ISD::SETUNE: Opc = Alpha::CMPTEQ; inv = true; break; case ISD::SETO: Opc = Alpha::CMPTUN; inv = true; break; case ISD::SETUO: Opc = Alpha::CMPTUN; break; }; SDValue tmp1 = N->getOperand(rev?1:0); SDValue tmp2 = N->getOperand(rev?0:1); AddToISelQueue(tmp1); AddToISelQueue(tmp2); SDNode *cmp = CurDAG->getTargetNode(Opc, MVT::f64, tmp1, tmp2); if (inv) cmp = CurDAG->getTargetNode(Alpha::CMPTEQ, MVT::f64, SDValue(cmp, 0), CurDAG->getRegister(Alpha::F31, MVT::f64)); switch(CC) { case ISD::SETUEQ: case ISD::SETULT: case ISD::SETULE: case ISD::SETUNE: case ISD::SETUGT: case ISD::SETUGE: { SDNode* cmp2 = CurDAG->getTargetNode(Alpha::CMPTUN, MVT::f64, tmp1, tmp2); cmp = CurDAG->getTargetNode(Alpha::ADDT, MVT::f64, SDValue(cmp2, 0), SDValue(cmp, 0)); break; } default: break; } SDNode* LD = CurDAG->getTargetNode(Alpha::FTOIT, MVT::i64, SDValue(cmp, 0)); return CurDAG->getTargetNode(Alpha::CMPULT, MVT::i64, CurDAG->getRegister(Alpha::R31, MVT::i64), SDValue(LD,0)); } break; case ISD::SELECT: if (N->getValueType(0).isFloatingPoint() && (N->getOperand(0).getOpcode() != ISD::SETCC || !N->getOperand(0).getOperand(1).getValueType().isFloatingPoint())) { //This should be the condition not covered by the Patterns //FIXME: Don't have SelectCode die, but rather return something testable // so that things like this can be caught in fall though code //move int to fp bool isDouble = N->getValueType(0) == MVT::f64; SDValue cond = N->getOperand(0); SDValue TV = N->getOperand(1); SDValue FV = N->getOperand(2); AddToISelQueue(cond); AddToISelQueue(TV); AddToISelQueue(FV); SDNode* LD = CurDAG->getTargetNode(Alpha::ITOFT, MVT::f64, cond); return CurDAG->getTargetNode(isDouble?Alpha::FCMOVNET:Alpha::FCMOVNES, MVT::f64, FV, TV, SDValue(LD,0)); } break; case ISD::AND: { ConstantSDNode* SC = NULL; ConstantSDNode* MC = NULL; if (N->getOperand(0).getOpcode() == ISD::SRL && (MC = dyn_cast(N->getOperand(1))) && (SC = dyn_cast(N->getOperand(0).getOperand(1)))) { uint64_t sval = SC->getZExtValue(); uint64_t mval = MC->getZExtValue(); // If the result is a zap, let the autogened stuff handle it. if (get_zapImm(N->getOperand(0), mval)) break; // given mask X, and shift S, we want to see if there is any zap in the // mask if we play around with the botton S bits uint64_t dontcare = (~0ULL) >> (64 - sval); uint64_t mask = mval << sval; if (get_zapImm(mask | dontcare)) mask = mask | dontcare; if (get_zapImm(mask)) { AddToISelQueue(N->getOperand(0).getOperand(0)); SDValue Z = SDValue(CurDAG->getTargetNode(Alpha::ZAPNOTi, MVT::i64, N->getOperand(0).getOperand(0), getI64Imm(get_zapImm(mask))), 0); return CurDAG->getTargetNode(Alpha::SRLr, MVT::i64, Z, getI64Imm(sval)); } } break; } } return SelectCode(Op); } void AlphaDAGToDAGISel::SelectCALL(SDValue Op) { //TODO: add flag stuff to prevent nondeturministic breakage! SDNode *N = Op.getNode(); SDValue Chain = N->getOperand(0); SDValue Addr = N->getOperand(1); SDValue InFlag(0,0); // Null incoming flag value. AddToISelQueue(Chain); std::vector CallOperands; std::vector TypeOperands; //grab the arguments for(int i = 2, e = N->getNumOperands(); i < e; ++i) { TypeOperands.push_back(N->getOperand(i).getValueType()); AddToISelQueue(N->getOperand(i)); CallOperands.push_back(N->getOperand(i)); } int count = N->getNumOperands() - 2; static const unsigned args_int[] = {Alpha::R16, Alpha::R17, Alpha::R18, Alpha::R19, Alpha::R20, Alpha::R21}; static const unsigned args_float[] = {Alpha::F16, Alpha::F17, Alpha::F18, Alpha::F19, Alpha::F20, Alpha::F21}; for (int i = 6; i < count; ++i) { unsigned Opc = Alpha::WTF; if (TypeOperands[i].isInteger()) { Opc = Alpha::STQ; } else if (TypeOperands[i] == MVT::f32) { Opc = Alpha::STS; } else if (TypeOperands[i] == MVT::f64) { Opc = Alpha::STT; } else assert(0 && "Unknown operand"); SDValue Ops[] = { CallOperands[i], getI64Imm((i - 6) * 8), CurDAG->getCopyFromReg(Chain, Alpha::R30, MVT::i64), Chain }; Chain = SDValue(CurDAG->getTargetNode(Opc, MVT::Other, Ops, 4), 0); } for (int i = 0; i < std::min(6, count); ++i) { if (TypeOperands[i].isInteger()) { Chain = CurDAG->getCopyToReg(Chain, args_int[i], CallOperands[i], InFlag); InFlag = Chain.getValue(1); } else if (TypeOperands[i] == MVT::f32 || TypeOperands[i] == MVT::f64) { Chain = CurDAG->getCopyToReg(Chain, args_float[i], CallOperands[i], InFlag); InFlag = Chain.getValue(1); } else assert(0 && "Unknown operand"); } // Finally, once everything is in registers to pass to the call, emit the // call itself. if (Addr.getOpcode() == AlphaISD::GPRelLo) { SDValue GOT = getGlobalBaseReg(); Chain = CurDAG->getCopyToReg(Chain, Alpha::R29, GOT, InFlag); InFlag = Chain.getValue(1); Chain = SDValue(CurDAG->getTargetNode(Alpha::BSR, MVT::Other, MVT::Flag, Addr.getOperand(0), Chain, InFlag), 0); } else { AddToISelQueue(Addr); Chain = CurDAG->getCopyToReg(Chain, Alpha::R27, Addr, InFlag); InFlag = Chain.getValue(1); Chain = SDValue(CurDAG->getTargetNode(Alpha::JSR, MVT::Other, MVT::Flag, Chain, InFlag), 0); } InFlag = Chain.getValue(1); std::vector CallResults; switch (N->getValueType(0).getSimpleVT()) { default: assert(0 && "Unexpected ret value!"); case MVT::Other: break; case MVT::i64: Chain = CurDAG->getCopyFromReg(Chain, Alpha::R0, MVT::i64, InFlag).getValue(1); CallResults.push_back(Chain.getValue(0)); break; case MVT::f32: Chain = CurDAG->getCopyFromReg(Chain, Alpha::F0, MVT::f32, InFlag).getValue(1); CallResults.push_back(Chain.getValue(0)); break; case MVT::f64: Chain = CurDAG->getCopyFromReg(Chain, Alpha::F0, MVT::f64, InFlag).getValue(1); CallResults.push_back(Chain.getValue(0)); break; } CallResults.push_back(Chain); for (unsigned i = 0, e = CallResults.size(); i != e; ++i) ReplaceUses(Op.getValue(i), CallResults[i]); } /// createAlphaISelDag - This pass converts a legalized DAG into a /// Alpha-specific DAG, ready for instruction scheduling. /// FunctionPass *llvm::createAlphaISelDag(AlphaTargetMachine &TM) { return new AlphaDAGToDAGISel(TM); }