//===-- X86Subtarget.cpp - X86 Subtarget Information ------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the X86 specific subclass of TargetSubtarget. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "subtarget" #include "X86Subtarget.h" #include "X86GenSubtarget.inc" #include "llvm/Module.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" using namespace llvm; static cl::opt AsmWriterFlavor("x86-asm-syntax", cl::init(X86Subtarget::Unset), cl::desc("Choose style of code to emit from X86 backend:"), cl::values( clEnumValN(X86Subtarget::ATT, "att", "Emit AT&T-style assembly"), clEnumValN(X86Subtarget::Intel, "intel", "Emit Intel-style assembly"), clEnumValEnd)); /// True if accessing the GV requires an extra load. For Windows, dllimported /// symbols are indirect, loading the value at address GV rather then the /// value of GV itself. This means that the GlobalAddress must be in the base /// or index register of the address, not the GV offset field. bool X86Subtarget::GVRequiresExtraLoad(const GlobalValue* GV, const TargetMachine& TM, bool isDirectCall) const { // FIXME: PIC if (TM.getRelocationModel() != Reloc::Static && TM.getCodeModel() != CodeModel::Large) { if (isTargetDarwin()) { if (isDirectCall) return false; bool isDecl = GV->isDeclaration() && !GV->hasNotBeenReadFromBitcode(); if (GV->hasHiddenVisibility() && (Is64Bit || (!isDecl && !GV->hasCommonLinkage()))) // If symbol visibility is hidden, the extra load is not needed if // target is x86-64 or the symbol is definitely defined in the current // translation unit. return false; return !isDirectCall && (isDecl || GV->mayBeOverridden()); } else if (isTargetELF()) { // Extra load is needed for all externally visible. if (isDirectCall) return false; if (GV->hasInternalLinkage() || GV->hasHiddenVisibility()) return false; return true; } else if (isTargetCygMing() || isTargetWindows()) { return (GV->hasDLLImportLinkage()); } } return false; } /// True if accessing the GV requires a register. This is a superset of the /// cases where GVRequiresExtraLoad is true. Some variations of PIC require /// a register, but not an extra load. bool X86Subtarget::GVRequiresRegister(const GlobalValue *GV, const TargetMachine& TM, bool isDirectCall) const { if (GVRequiresExtraLoad(GV, TM, isDirectCall)) return true; // Code below here need only consider cases where GVRequiresExtraLoad // returns false. if (TM.getRelocationModel() == Reloc::PIC_) return !isDirectCall && (GV->hasInternalLinkage() || GV->hasExternalLinkage()); return false; } /// getBZeroEntry - This function returns the name of a function which has an /// interface like the non-standard bzero function, if such a function exists on /// the current subtarget and it is considered prefereable over memset with zero /// passed as the second argument. Otherwise it returns null. const char *X86Subtarget::getBZeroEntry() const { // Darwin 10 has a __bzero entry point for this purpose. if (getDarwinVers() >= 10) return "__bzero"; return 0; } /// getSpecialAddressLatency - For targets where it is beneficial to /// backschedule instructions that compute addresses, return a value /// indicating the number of scheduling cycles of backscheduling that /// should be attempted. unsigned X86Subtarget::getSpecialAddressLatency() const { // For x86 out-of-order targets, back-schedule address computations so // that loads and stores aren't blocked. // This value was chosen arbitrarily. return 200; } /// GetCpuIDAndInfo - Execute the specified cpuid and return the 4 values in the /// specified arguments. If we can't run cpuid on the host, return true. bool X86::GetCpuIDAndInfo(unsigned value, unsigned *rEAX, unsigned *rEBX, unsigned *rECX, unsigned *rEDX) { #if defined(__x86_64__) // gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually. asm ("movq\t%%rbx, %%rsi\n\t" "cpuid\n\t" "xchgq\t%%rbx, %%rsi\n\t" : "=a" (*rEAX), "=S" (*rEBX), "=c" (*rECX), "=d" (*rEDX) : "a" (value)); return false; #elif defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86) #if defined(__GNUC__) asm ("movl\t%%ebx, %%esi\n\t" "cpuid\n\t" "xchgl\t%%ebx, %%esi\n\t" : "=a" (*rEAX), "=S" (*rEBX), "=c" (*rECX), "=d" (*rEDX) : "a" (value)); return false; #elif defined(_MSC_VER) __asm { mov eax,value cpuid mov esi,rEAX mov dword ptr [esi],eax mov esi,rEBX mov dword ptr [esi],ebx mov esi,rECX mov dword ptr [esi],ecx mov esi,rEDX mov dword ptr [esi],edx } return false; #endif #endif return true; } static void DetectFamilyModel(unsigned EAX, unsigned &Family, unsigned &Model) { Family = (EAX >> 8) & 0xf; // Bits 8 - 11 Model = (EAX >> 4) & 0xf; // Bits 4 - 7 if (Family == 6 || Family == 0xf) { if (Family == 0xf) // Examine extended family ID if family ID is F. Family += (EAX >> 20) & 0xff; // Bits 20 - 27 // Examine extended model ID if family ID is 6 or F. Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19 } } void X86Subtarget::AutoDetectSubtargetFeatures() { unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0; union { unsigned u[3]; char c[12]; } text; if (X86::GetCpuIDAndInfo(0, &EAX, text.u+0, text.u+2, text.u+1)) return; X86::GetCpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX); if ((EDX >> 23) & 0x1) X86SSELevel = MMX; if ((EDX >> 25) & 0x1) X86SSELevel = SSE1; if ((EDX >> 26) & 0x1) X86SSELevel = SSE2; if (ECX & 0x1) X86SSELevel = SSE3; if ((ECX >> 9) & 0x1) X86SSELevel = SSSE3; if ((ECX >> 19) & 0x1) X86SSELevel = SSE41; if ((ECX >> 20) & 0x1) X86SSELevel = SSE42; bool IsIntel = memcmp(text.c, "GenuineIntel", 12) == 0; bool IsAMD = !IsIntel && memcmp(text.c, "AuthenticAMD", 12) == 0; if (IsIntel || IsAMD) { // Determine if bit test memory instructions are slow. unsigned Family = 0; unsigned Model = 0; DetectFamilyModel(EAX, Family, Model); IsBTMemSlow = IsAMD || (Family == 6 && Model >= 13); X86::GetCpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX); HasX86_64 = (EDX >> 29) & 0x1; } } static const char *GetCurrentX86CPU() { unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0; if (X86::GetCpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX)) return "generic"; unsigned Family = 0; unsigned Model = 0; DetectFamilyModel(EAX, Family, Model); bool HasSSE42 = (ECX >> 19) & 0x1; X86::GetCpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX); bool Em64T = (EDX >> 29) & 0x1; union { unsigned u[3]; char c[12]; } text; X86::GetCpuIDAndInfo(0, &EAX, text.u+0, text.u+2, text.u+1); if (memcmp(text.c, "GenuineIntel", 12) == 0) { switch (Family) { case 3: return "i386"; case 4: return "i486"; case 5: switch (Model) { case 4: return "pentium-mmx"; default: return "pentium"; } case 6: switch (Model) { case 1: return "pentiumpro"; case 3: case 5: case 6: return "pentium2"; case 7: case 8: case 10: case 11: return "pentium3"; case 9: case 13: return "pentium-m"; case 14: return "yonah"; case 15: case 22: // Celeron M 540 return "core2"; case 23: // 45nm: Penryn , Wolfdale, Yorkfield (XE) return "penryn"; default: return "i686"; } case 15: { switch (Model) { case 3: case 4: case 6: // same as 4, but 65nm return (Em64T) ? "nocona" : "prescott"; case 28: // Intel Atom, and Core i7 both have this model. // Atom has SSSE3, Core i7 has SSE4.2 return (HasSSE42) ? "corei7" : "atom"; default: return (Em64T) ? "x86-64" : "pentium4"; } } default: return "generic"; } } else if (memcmp(text.c, "AuthenticAMD", 12) == 0) { // FIXME: this poorly matches the generated SubtargetFeatureKV table. There // appears to be no way to generate the wide variety of AMD-specific targets // from the information returned from CPUID. switch (Family) { case 4: return "i486"; case 5: switch (Model) { case 6: case 7: return "k6"; case 8: return "k6-2"; case 9: case 13: return "k6-3"; default: return "pentium"; } case 6: switch (Model) { case 4: return "athlon-tbird"; case 6: case 7: case 8: return "athlon-mp"; case 10: return "athlon-xp"; default: return "athlon"; } case 15: switch (Model) { case 1: return "opteron"; case 5: return "athlon-fx"; // also opteron default: return "athlon64"; } default: return "generic"; } } else { return "generic"; } } X86Subtarget::X86Subtarget(const Module &M, const std::string &FS, bool is64Bit) : AsmFlavor(AsmWriterFlavor) , PICStyle(PICStyles::None) , X86SSELevel(NoMMXSSE) , X863DNowLevel(NoThreeDNow) , HasX86_64(false) , IsBTMemSlow(false) , DarwinVers(0) , IsLinux(false) , stackAlignment(8) // FIXME: this is a known good value for Yonah. How about others? , MaxInlineSizeThreshold(128) , Is64Bit(is64Bit) , TargetType(isELF) { // Default to ELF unless otherwise specified. // Determine default and user specified characteristics if (!FS.empty()) { // If feature string is not empty, parse features string. std::string CPU = GetCurrentX86CPU(); ParseSubtargetFeatures(FS, CPU); } else { // Otherwise, use CPUID to auto-detect feature set. AutoDetectSubtargetFeatures(); } // If requesting codegen for X86-64, make sure that 64-bit and SSE2 features // are enabled. These are available on all x86-64 CPUs. if (Is64Bit) { HasX86_64 = true; if (X86SSELevel < SSE2) X86SSELevel = SSE2; } DOUT << "Subtarget features: SSELevel " << X86SSELevel << ", 3DNowLevel " << X863DNowLevel << ", 64bit " << HasX86_64 << "\n"; // Set the boolean corresponding to the current target triple, or the default // if one cannot be determined, to true. const std::string& TT = M.getTargetTriple(); if (TT.length() > 5) { size_t Pos; if ((Pos = TT.find("-darwin")) != std::string::npos) { TargetType = isDarwin; // Compute the darwin version number. if (isdigit(TT[Pos+7])) DarwinVers = atoi(&TT[Pos+7]); else DarwinVers = 8; // Minimum supported darwin is Tiger. } else if (TT.find("linux") != std::string::npos) { // Linux doesn't imply ELF, but we don't currently support anything else. TargetType = isELF; IsLinux = true; } else if (TT.find("cygwin") != std::string::npos) { TargetType = isCygwin; } else if (TT.find("mingw") != std::string::npos) { TargetType = isMingw; } else if (TT.find("win32") != std::string::npos) { TargetType = isWindows; } else if (TT.find("windows") != std::string::npos) { TargetType = isWindows; } } else if (TT.empty()) { #if defined(__CYGWIN__) TargetType = isCygwin; #elif defined(__MINGW32__) || defined(__MINGW64__) TargetType = isMingw; #elif defined(__APPLE__) TargetType = isDarwin; #if __APPLE_CC__ > 5400 DarwinVers = 9; // GCC 5400+ is Leopard. #else DarwinVers = 8; // Minimum supported darwin is Tiger. #endif #elif defined(_WIN32) || defined(_WIN64) TargetType = isWindows; #elif defined(__linux__) // Linux doesn't imply ELF, but we don't currently support anything else. TargetType = isELF; IsLinux = true; #endif } // If the asm syntax hasn't been overridden on the command line, use whatever // the target wants. if (AsmFlavor == X86Subtarget::Unset) { AsmFlavor = (TargetType == isWindows) ? X86Subtarget::Intel : X86Subtarget::ATT; } // Stack alignment is 16 bytes on Darwin (both 32 and 64 bit) and for all 64 // bit targets. if (TargetType == isDarwin || Is64Bit) stackAlignment = 16; if (StackAlignment) stackAlignment = StackAlignment; }