//===- ARMInstrInfo.td - Target Description for ARM Target -*- tablegen -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the ARM instructions in TableGen format. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // ARM specific DAG Nodes. // // Type profiles. def SDT_ARMCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>; def SDT_ARMCallSeqEnd : SDCallSeqEnd<[ SDTCisVT<0, i32>, SDTCisVT<1, i32> ]>; def SDT_ARMSaveCallPC : SDTypeProfile<0, 1, []>; def SDT_ARMcall : SDTypeProfile<0, -1, [SDTCisInt<0>]>; def SDT_ARMCMov : SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisVT<3, i32>]>; def SDT_ARMBrcond : SDTypeProfile<0, 2, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>; def SDT_ARMBrJT : SDTypeProfile<0, 3, [SDTCisPtrTy<0>, SDTCisVT<1, i32>, SDTCisVT<2, i32>]>; def SDT_ARMBr2JT : SDTypeProfile<0, 4, [SDTCisPtrTy<0>, SDTCisVT<1, i32>, SDTCisVT<2, i32>, SDTCisVT<3, i32>]>; def SDT_ARMCmp : SDTypeProfile<0, 2, [SDTCisSameAs<0, 1>]>; def SDT_ARMPICAdd : SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>, SDTCisPtrTy<1>, SDTCisVT<2, i32>]>; def SDT_ARMThreadPointer : SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>; def SDT_ARMEH_SJLJ_Setjmp : SDTypeProfile<1, 1, [SDTCisInt<0>, SDTCisPtrTy<1>]>; // Node definitions. def ARMWrapper : SDNode<"ARMISD::Wrapper", SDTIntUnaryOp>; def ARMWrapperJT : SDNode<"ARMISD::WrapperJT", SDTIntBinOp>; def ARMcallseq_start : SDNode<"ISD::CALLSEQ_START", SDT_ARMCallSeqStart, [SDNPHasChain, SDNPOutFlag]>; def ARMcallseq_end : SDNode<"ISD::CALLSEQ_END", SDT_ARMCallSeqEnd, [SDNPHasChain, SDNPOptInFlag, SDNPOutFlag]>; def ARMcall : SDNode<"ARMISD::CALL", SDT_ARMcall, [SDNPHasChain, SDNPOptInFlag, SDNPOutFlag]>; def ARMcall_pred : SDNode<"ARMISD::CALL_PRED", SDT_ARMcall, [SDNPHasChain, SDNPOptInFlag, SDNPOutFlag]>; def ARMcall_nolink : SDNode<"ARMISD::CALL_NOLINK", SDT_ARMcall, [SDNPHasChain, SDNPOptInFlag, SDNPOutFlag]>; def ARMretflag : SDNode<"ARMISD::RET_FLAG", SDTNone, [SDNPHasChain, SDNPOptInFlag]>; def ARMcmov : SDNode<"ARMISD::CMOV", SDT_ARMCMov, [SDNPInFlag]>; def ARMcneg : SDNode<"ARMISD::CNEG", SDT_ARMCMov, [SDNPInFlag]>; def ARMbrcond : SDNode<"ARMISD::BRCOND", SDT_ARMBrcond, [SDNPHasChain, SDNPInFlag, SDNPOutFlag]>; def ARMbrjt : SDNode<"ARMISD::BR_JT", SDT_ARMBrJT, [SDNPHasChain]>; def ARMbr2jt : SDNode<"ARMISD::BR2_JT", SDT_ARMBr2JT, [SDNPHasChain]>; def ARMcmp : SDNode<"ARMISD::CMP", SDT_ARMCmp, [SDNPOutFlag]>; def ARMcmpZ : SDNode<"ARMISD::CMPZ", SDT_ARMCmp, [SDNPOutFlag,SDNPCommutative]>; def ARMpic_add : SDNode<"ARMISD::PIC_ADD", SDT_ARMPICAdd>; def ARMsrl_flag : SDNode<"ARMISD::SRL_FLAG", SDTIntUnaryOp, [SDNPOutFlag]>; def ARMsra_flag : SDNode<"ARMISD::SRA_FLAG", SDTIntUnaryOp, [SDNPOutFlag]>; def ARMrrx : SDNode<"ARMISD::RRX" , SDTIntUnaryOp, [SDNPInFlag ]>; def ARMthread_pointer: SDNode<"ARMISD::THREAD_POINTER", SDT_ARMThreadPointer>; def ARMeh_sjlj_setjmp: SDNode<"ARMISD::EH_SJLJ_SETJMP", SDT_ARMEH_SJLJ_Setjmp>; //===----------------------------------------------------------------------===// // ARM Instruction Predicate Definitions. // def HasV5T : Predicate<"Subtarget->hasV5TOps()">; def HasV5TE : Predicate<"Subtarget->hasV5TEOps()">; def HasV6 : Predicate<"Subtarget->hasV6Ops()">; def HasV6T2 : Predicate<"Subtarget->hasV6T2Ops()">; def HasV7 : Predicate<"Subtarget->hasV7Ops()">; def HasVFP2 : Predicate<"Subtarget->hasVFP2()">; def HasVFP3 : Predicate<"Subtarget->hasVFP3()">; def HasNEON : Predicate<"Subtarget->hasNEON()">; def UseNEONForFP : Predicate<"Subtarget->useNEONForSinglePrecisionFP()">; def DontUseNEONForFP : Predicate<"!Subtarget->useNEONForSinglePrecisionFP()">; def IsThumb : Predicate<"Subtarget->isThumb()">; def IsThumb1Only : Predicate<"Subtarget->isThumb1Only()">; def IsThumb2 : Predicate<"Subtarget->isThumb2()">; def IsARM : Predicate<"!Subtarget->isThumb()">; def IsDarwin : Predicate<"Subtarget->isTargetDarwin()">; def IsNotDarwin : Predicate<"!Subtarget->isTargetDarwin()">; def CarryDefIsUnused : Predicate<"!N.getNode()->hasAnyUseOfValue(1)">; def CarryDefIsUsed : Predicate<"N.getNode()->hasAnyUseOfValue(1)">; //===----------------------------------------------------------------------===// // ARM Flag Definitions. class RegConstraint { string Constraints = C; } //===----------------------------------------------------------------------===// // ARM specific transformation functions and pattern fragments. // // so_imm_neg_XFORM - Return a so_imm value packed into the format described for // so_imm_neg def below. def so_imm_neg_XFORM : SDNodeXFormgetTargetConstant(-(int)N->getZExtValue(), MVT::i32); }]>; // so_imm_not_XFORM - Return a so_imm value packed into the format described for // so_imm_not def below. def so_imm_not_XFORM : SDNodeXFormgetTargetConstant(~(int)N->getZExtValue(), MVT::i32); }]>; // rot_imm predicate - True if the 32-bit immediate is equal to 8, 16, or 24. def rot_imm : PatLeaf<(i32 imm), [{ int32_t v = (int32_t)N->getZExtValue(); return v == 8 || v == 16 || v == 24; }]>; /// imm1_15 predicate - True if the 32-bit immediate is in the range [1,15]. def imm1_15 : PatLeaf<(i32 imm), [{ return (int32_t)N->getZExtValue() >= 1 && (int32_t)N->getZExtValue() < 16; }]>; /// imm16_31 predicate - True if the 32-bit immediate is in the range [16,31]. def imm16_31 : PatLeaf<(i32 imm), [{ return (int32_t)N->getZExtValue() >= 16 && (int32_t)N->getZExtValue() < 32; }]>; def so_imm_neg : PatLeaf<(imm), [{ return ARM_AM::getSOImmVal(-(int)N->getZExtValue()) != -1; }], so_imm_neg_XFORM>; def so_imm_not : PatLeaf<(imm), [{ return ARM_AM::getSOImmVal(~(int)N->getZExtValue()) != -1; }], so_imm_not_XFORM>; // sext_16_node predicate - True if the SDNode is sign-extended 16 or more bits. def sext_16_node : PatLeaf<(i32 GPR:$a), [{ return CurDAG->ComputeNumSignBits(SDValue(N,0)) >= 17; }]>; /// bf_inv_mask_imm predicate - An AND mask to clear an arbitrary width bitfield /// e.g., 0xf000ffff def bf_inv_mask_imm : Operand, PatLeaf<(imm), [{ uint32_t v = (uint32_t)N->getZExtValue(); if (v == 0xffffffff) return 0; // there can be 1's on either or both "outsides", all the "inside" // bits must be 0's unsigned int lsb = 0, msb = 31; while (v & (1 << msb)) --msb; while (v & (1 << lsb)) ++lsb; for (unsigned int i = lsb; i <= msb; ++i) { if (v & (1 << i)) return 0; } return 1; }] > { let PrintMethod = "printBitfieldInvMaskImmOperand"; } class BinOpFrag : PatFrag<(ops node:$LHS, node:$RHS), res>; class UnOpFrag : PatFrag<(ops node:$Src), res>; //===----------------------------------------------------------------------===// // Operand Definitions. // // Branch target. def brtarget : Operand; // A list of registers separated by comma. Used by load/store multiple. def reglist : Operand { let PrintMethod = "printRegisterList"; } // An operand for the CONSTPOOL_ENTRY pseudo-instruction. def cpinst_operand : Operand { let PrintMethod = "printCPInstOperand"; } def jtblock_operand : Operand { let PrintMethod = "printJTBlockOperand"; } def jt2block_operand : Operand { let PrintMethod = "printJT2BlockOperand"; } // Local PC labels. def pclabel : Operand { let PrintMethod = "printPCLabel"; } // shifter_operand operands: so_reg and so_imm. def so_reg : Operand, // reg reg imm ComplexPattern { let PrintMethod = "printSORegOperand"; let MIOperandInfo = (ops GPR, GPR, i32imm); } // so_imm - Match a 32-bit shifter_operand immediate operand, which is an // 8-bit immediate rotated by an arbitrary number of bits. so_imm values are // represented in the imm field in the same 12-bit form that they are encoded // into so_imm instructions: the 8-bit immediate is the least significant bits // [bits 0-7], the 4-bit shift amount is the next 4 bits [bits 8-11]. def so_imm : Operand, PatLeaf<(imm), [{ return ARM_AM::getSOImmVal(N->getZExtValue()) != -1; }]> { let PrintMethod = "printSOImmOperand"; } // Break so_imm's up into two pieces. This handles immediates with up to 16 // bits set in them. This uses so_imm2part to match and so_imm2part_[12] to // get the first/second pieces. def so_imm2part : Operand, PatLeaf<(imm), [{ return ARM_AM::isSOImmTwoPartVal((unsigned)N->getZExtValue()); }]> { let PrintMethod = "printSOImm2PartOperand"; } def so_imm2part_1 : SDNodeXFormgetZExtValue()); return CurDAG->getTargetConstant(V, MVT::i32); }]>; def so_imm2part_2 : SDNodeXFormgetZExtValue()); return CurDAG->getTargetConstant(V, MVT::i32); }]>; // Define ARM specific addressing modes. // addrmode2 := reg +/- reg shop imm // addrmode2 := reg +/- imm12 // def addrmode2 : Operand, ComplexPattern { let PrintMethod = "printAddrMode2Operand"; let MIOperandInfo = (ops GPR:$base, GPR:$offsreg, i32imm:$offsimm); } def am2offset : Operand, ComplexPattern { let PrintMethod = "printAddrMode2OffsetOperand"; let MIOperandInfo = (ops GPR, i32imm); } // addrmode3 := reg +/- reg // addrmode3 := reg +/- imm8 // def addrmode3 : Operand, ComplexPattern { let PrintMethod = "printAddrMode3Operand"; let MIOperandInfo = (ops GPR:$base, GPR:$offsreg, i32imm:$offsimm); } def am3offset : Operand, ComplexPattern { let PrintMethod = "printAddrMode3OffsetOperand"; let MIOperandInfo = (ops GPR, i32imm); } // addrmode4 := reg, // def addrmode4 : Operand, ComplexPattern { let PrintMethod = "printAddrMode4Operand"; let MIOperandInfo = (ops GPR, i32imm); } // addrmode5 := reg +/- imm8*4 // def addrmode5 : Operand, ComplexPattern { let PrintMethod = "printAddrMode5Operand"; let MIOperandInfo = (ops GPR, i32imm); } // addrmode6 := reg with optional writeback // def addrmode6 : Operand, ComplexPattern { let PrintMethod = "printAddrMode6Operand"; let MIOperandInfo = (ops GPR:$addr, GPR:$upd, i32imm); } // addrmodepc := pc + reg // def addrmodepc : Operand, ComplexPattern { let PrintMethod = "printAddrModePCOperand"; let MIOperandInfo = (ops GPR, i32imm); } def nohash_imm : Operand { let PrintMethod = "printNoHashImmediate"; } //===----------------------------------------------------------------------===// include "ARMInstrFormats.td" //===----------------------------------------------------------------------===// // Multiclass helpers... // /// AsI1_bin_irs - Defines a set of (op r, {so_imm|r|so_reg}) patterns for a /// binop that produces a value. multiclass AsI1_bin_irs opcod, string opc, PatFrag opnode, bit Commutable = 0> { def ri : AsI1 { let Inst{25} = 1; } def rr : AsI1 { let Inst{25} = 0; let isCommutable = Commutable; } def rs : AsI1 { let Inst{25} = 0; } } /// AI1_bin_s_irs - Similar to AsI1_bin_irs except it sets the 's' bit so the /// instruction modifies the CSPR register. let Defs = [CPSR] in { multiclass AI1_bin_s_irs opcod, string opc, PatFrag opnode, bit Commutable = 0> { def ri : AI1 { let Inst{25} = 1; } def rr : AI1 { let isCommutable = Commutable; let Inst{25} = 0; } def rs : AI1 { let Inst{25} = 0; } } } /// AI1_cmp_irs - Defines a set of (op r, {so_imm|r|so_reg}) cmp / test /// patterns. Similar to AsI1_bin_irs except the instruction does not produce /// a explicit result, only implicitly set CPSR. let Defs = [CPSR] in { multiclass AI1_cmp_irs opcod, string opc, PatFrag opnode, bit Commutable = 0> { def ri : AI1 { let Inst{25} = 1; } def rr : AI1 { let Inst{25} = 0; let isCommutable = Commutable; } def rs : AI1 { let Inst{25} = 0; } } } /// AI_unary_rrot - A unary operation with two forms: one whose operand is a /// register and one whose operand is a register rotated by 8/16/24. /// FIXME: Remove the 'r' variant. Its rot_imm is zero. multiclass AI_unary_rrot opcod, string opc, PatFrag opnode> { def r : AExtI, Requires<[IsARM, HasV6]> { let Inst{19-16} = 0b1111; } def r_rot : AExtI, Requires<[IsARM, HasV6]> { let Inst{19-16} = 0b1111; } } /// AI_bin_rrot - A binary operation with two forms: one whose operand is a /// register and one whose operand is a register rotated by 8/16/24. multiclass AI_bin_rrot opcod, string opc, PatFrag opnode> { def rr : AExtI, Requires<[IsARM, HasV6]>; def rr_rot : AExtI, Requires<[IsARM, HasV6]>; } /// AI1_adde_sube_irs - Define instructions and patterns for adde and sube. let Uses = [CPSR] in { multiclass AI1_adde_sube_irs opcod, string opc, PatFrag opnode, bit Commutable = 0> { def ri : AsI1, Requires<[IsARM, CarryDefIsUnused]> { let Inst{25} = 1; } def rr : AsI1, Requires<[IsARM, CarryDefIsUnused]> { let isCommutable = Commutable; let Inst{25} = 0; } def rs : AsI1, Requires<[IsARM, CarryDefIsUnused]> { let Inst{25} = 0; } // Carry setting variants def Sri : AXI1, Requires<[IsARM, CarryDefIsUsed]> { let Defs = [CPSR]; let Inst{25} = 1; } def Srr : AXI1, Requires<[IsARM, CarryDefIsUsed]> { let Defs = [CPSR]; let Inst{25} = 0; } def Srs : AXI1, Requires<[IsARM, CarryDefIsUsed]> { let Defs = [CPSR]; let Inst{25} = 0; } } } //===----------------------------------------------------------------------===// // Instructions //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Miscellaneous Instructions. // /// CONSTPOOL_ENTRY - This instruction represents a floating constant pool in /// the function. The first operand is the ID# for this instruction, the second /// is the index into the MachineConstantPool that this is, the third is the /// size in bytes of this constant pool entry. let neverHasSideEffects = 1, isNotDuplicable = 1 in def CONSTPOOL_ENTRY : PseudoInst<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx, i32imm:$size), NoItinerary, "${instid:label} ${cpidx:cpentry}", []>; let Defs = [SP], Uses = [SP] in { def ADJCALLSTACKUP : PseudoInst<(outs), (ins i32imm:$amt1, i32imm:$amt2, pred:$p), NoItinerary, "@ ADJCALLSTACKUP $amt1", [(ARMcallseq_end timm:$amt1, timm:$amt2)]>; def ADJCALLSTACKDOWN : PseudoInst<(outs), (ins i32imm:$amt, pred:$p), NoItinerary, "@ ADJCALLSTACKDOWN $amt", [(ARMcallseq_start timm:$amt)]>; } def DWARF_LOC : PseudoInst<(outs), (ins i32imm:$line, i32imm:$col, i32imm:$file), NoItinerary, ".loc $file, $line, $col", [(dwarf_loc (i32 imm:$line), (i32 imm:$col), (i32 imm:$file))]>; // Address computation and loads and stores in PIC mode. let isNotDuplicable = 1 in { def PICADD : AXI1<0b0100, (outs GPR:$dst), (ins GPR:$a, pclabel:$cp, pred:$p), Pseudo, IIC_iALUr, "\n$cp:\n\tadd$p $dst, pc, $a", [(set GPR:$dst, (ARMpic_add GPR:$a, imm:$cp))]>; let AddedComplexity = 10 in { let canFoldAsLoad = 1 in def PICLDR : AXI2ldw<(outs GPR:$dst), (ins addrmodepc:$addr, pred:$p), Pseudo, IIC_iLoadr, "\n${addr:label}:\n\tldr$p $dst, $addr", [(set GPR:$dst, (load addrmodepc:$addr))]>; def PICLDRH : AXI3ldh<(outs GPR:$dst), (ins addrmodepc:$addr, pred:$p), Pseudo, IIC_iLoadr, "\n${addr:label}:\n\tldr${p}h $dst, $addr", [(set GPR:$dst, (zextloadi16 addrmodepc:$addr))]>; def PICLDRB : AXI2ldb<(outs GPR:$dst), (ins addrmodepc:$addr, pred:$p), Pseudo, IIC_iLoadr, "\n${addr:label}:\n\tldr${p}b $dst, $addr", [(set GPR:$dst, (zextloadi8 addrmodepc:$addr))]>; def PICLDRSH : AXI3ldsh<(outs GPR:$dst), (ins addrmodepc:$addr, pred:$p), Pseudo, IIC_iLoadr, "\n${addr:label}:\n\tldr${p}sh $dst, $addr", [(set GPR:$dst, (sextloadi16 addrmodepc:$addr))]>; def PICLDRSB : AXI3ldsb<(outs GPR:$dst), (ins addrmodepc:$addr, pred:$p), Pseudo, IIC_iLoadr, "\n${addr:label}:\n\tldr${p}sb $dst, $addr", [(set GPR:$dst, (sextloadi8 addrmodepc:$addr))]>; } let AddedComplexity = 10 in { def PICSTR : AXI2stw<(outs), (ins GPR:$src, addrmodepc:$addr, pred:$p), Pseudo, IIC_iStorer, "\n${addr:label}:\n\tstr$p $src, $addr", [(store GPR:$src, addrmodepc:$addr)]>; def PICSTRH : AXI3sth<(outs), (ins GPR:$src, addrmodepc:$addr, pred:$p), Pseudo, IIC_iStorer, "\n${addr:label}:\n\tstr${p}h $src, $addr", [(truncstorei16 GPR:$src, addrmodepc:$addr)]>; def PICSTRB : AXI2stb<(outs), (ins GPR:$src, addrmodepc:$addr, pred:$p), Pseudo, IIC_iStorer, "\n${addr:label}:\n\tstr${p}b $src, $addr", [(truncstorei8 GPR:$src, addrmodepc:$addr)]>; } } // isNotDuplicable = 1 // LEApcrel - Load a pc-relative address into a register without offending the // assembler. def LEApcrel : AXI1<0x0, (outs GPR:$dst), (ins i32imm:$label, pred:$p), Pseudo, IIC_iALUi, !strconcat(!strconcat(".set ${:private}PCRELV${:uid}, ($label-(", "${:private}PCRELL${:uid}+8))\n"), !strconcat("${:private}PCRELL${:uid}:\n\t", "add$p $dst, pc, #${:private}PCRELV${:uid}")), []>; def LEApcrelJT : AXI1<0x0, (outs GPR:$dst), (ins i32imm:$label, nohash_imm:$id, pred:$p), Pseudo, IIC_iALUi, !strconcat(!strconcat(".set ${:private}PCRELV${:uid}, " "(${label}_${id}-(", "${:private}PCRELL${:uid}+8))\n"), !strconcat("${:private}PCRELL${:uid}:\n\t", "add$p $dst, pc, #${:private}PCRELV${:uid}")), []> { let Inst{25} = 1; } //===----------------------------------------------------------------------===// // Control Flow Instructions. // let isReturn = 1, isTerminator = 1 in def BX_RET : AI<(outs), (ins), BrMiscFrm, IIC_Br, "bx", " lr", [(ARMretflag)]> { let Inst{7-4} = 0b0001; let Inst{19-8} = 0b111111111111; let Inst{27-20} = 0b00010010; } // FIXME: remove when we have a way to marking a MI with these properties. // FIXME: $dst1 should be a def. But the extra ops must be in the end of the // operand list. // FIXME: Should pc be an implicit operand like PICADD, etc? let isReturn = 1, isTerminator = 1, mayLoad = 1 in def LDM_RET : AXI4ld<(outs), (ins addrmode4:$addr, pred:$p, reglist:$dst1, variable_ops), LdStMulFrm, IIC_Br, "ldm${p}${addr:submode} $addr, $dst1", []>; // On non-Darwin platforms R9 is callee-saved. let isCall = 1, Defs = [R0, R1, R2, R3, R12, LR, D0, D1, D2, D3, D4, D5, D6, D7, D16, D17, D18, D19, D20, D21, D22, D23, D24, D25, D26, D27, D28, D29, D30, D31, CPSR, FPSCR] in { def BL : ABXI<0b1011, (outs), (ins i32imm:$func, variable_ops), IIC_Br, "bl ${func:call}", [(ARMcall tglobaladdr:$func)]>, Requires<[IsARM, IsNotDarwin]>; def BL_pred : ABI<0b1011, (outs), (ins i32imm:$func, variable_ops), IIC_Br, "bl", " ${func:call}", [(ARMcall_pred tglobaladdr:$func)]>, Requires<[IsARM, IsNotDarwin]>; // ARMv5T and above def BLX : AXI<(outs), (ins GPR:$func, variable_ops), BrMiscFrm, IIC_Br, "blx $func", [(ARMcall GPR:$func)]>, Requires<[IsARM, HasV5T, IsNotDarwin]> { let Inst{7-4} = 0b0011; let Inst{19-8} = 0b111111111111; let Inst{27-20} = 0b00010010; } // ARMv4T def BX : ABXIx2<(outs), (ins GPR:$func, variable_ops), IIC_Br, "mov lr, pc\n\tbx $func", [(ARMcall_nolink GPR:$func)]>, Requires<[IsARM, IsNotDarwin]> { let Inst{7-4} = 0b0001; let Inst{19-8} = 0b111111111111; let Inst{27-20} = 0b00010010; } } // On Darwin R9 is call-clobbered. let isCall = 1, Defs = [R0, R1, R2, R3, R9, R12, LR, D0, D1, D2, D3, D4, D5, D6, D7, D16, D17, D18, D19, D20, D21, D22, D23, D24, D25, D26, D27, D28, D29, D30, D31, CPSR, FPSCR] in { def BLr9 : ABXI<0b1011, (outs), (ins i32imm:$func, variable_ops), IIC_Br, "bl ${func:call}", [(ARMcall tglobaladdr:$func)]>, Requires<[IsARM, IsDarwin]>; def BLr9_pred : ABI<0b1011, (outs), (ins i32imm:$func, variable_ops), IIC_Br, "bl", " ${func:call}", [(ARMcall_pred tglobaladdr:$func)]>, Requires<[IsARM, IsDarwin]>; // ARMv5T and above def BLXr9 : AXI<(outs), (ins GPR:$func, variable_ops), BrMiscFrm, IIC_Br, "blx $func", [(ARMcall GPR:$func)]>, Requires<[IsARM, HasV5T, IsDarwin]> { let Inst{7-4} = 0b0011; let Inst{19-8} = 0b111111111111; let Inst{27-20} = 0b00010010; } // ARMv4T def BXr9 : ABXIx2<(outs), (ins GPR:$func, variable_ops), IIC_Br, "mov lr, pc\n\tbx $func", [(ARMcall_nolink GPR:$func)]>, Requires<[IsARM, IsDarwin]> { let Inst{7-4} = 0b0001; let Inst{19-8} = 0b111111111111; let Inst{27-20} = 0b00010010; } } let isBranch = 1, isTerminator = 1 in { // B is "predicable" since it can be xformed into a Bcc. let isBarrier = 1 in { let isPredicable = 1 in def B : ABXI<0b1010, (outs), (ins brtarget:$target), IIC_Br, "b $target", [(br bb:$target)]>; let isNotDuplicable = 1, isIndirectBranch = 1 in { def BR_JTr : JTI<(outs), (ins GPR:$target, jtblock_operand:$jt, i32imm:$id), IIC_Br, "mov pc, $target \n$jt", [(ARMbrjt GPR:$target, tjumptable:$jt, imm:$id)]> { let Inst{20} = 0; // S Bit let Inst{24-21} = 0b1101; let Inst{27-25} = 0b000; } def BR_JTm : JTI<(outs), (ins addrmode2:$target, jtblock_operand:$jt, i32imm:$id), IIC_Br, "ldr pc, $target \n$jt", [(ARMbrjt (i32 (load addrmode2:$target)), tjumptable:$jt, imm:$id)]> { let Inst{20} = 1; // L bit let Inst{21} = 0; // W bit let Inst{22} = 0; // B bit let Inst{24} = 1; // P bit let Inst{27-25} = 0b011; } def BR_JTadd : JTI<(outs), (ins GPR:$target, GPR:$idx, jtblock_operand:$jt, i32imm:$id), IIC_Br, "add pc, $target, $idx \n$jt", [(ARMbrjt (add GPR:$target, GPR:$idx), tjumptable:$jt, imm:$id)]> { let Inst{20} = 0; // S bit let Inst{24-21} = 0b0100; let Inst{27-25} = 0b000; } } // isNotDuplicable = 1, isIndirectBranch = 1 } // isBarrier = 1 // FIXME: should be able to write a pattern for ARMBrcond, but can't use // a two-value operand where a dag node expects two operands. :( def Bcc : ABI<0b1010, (outs), (ins brtarget:$target), IIC_Br, "b", " $target", [/*(ARMbrcond bb:$target, imm:$cc, CCR:$ccr)*/]>; } //===----------------------------------------------------------------------===// // Load / store Instructions. // // Load let canFoldAsLoad = 1 in def LDR : AI2ldw<(outs GPR:$dst), (ins addrmode2:$addr), LdFrm, IIC_iLoadr, "ldr", " $dst, $addr", [(set GPR:$dst, (load addrmode2:$addr))]>; // Special LDR for loads from non-pc-relative constpools. let canFoldAsLoad = 1, mayLoad = 1, isReMaterializable = 1 in def LDRcp : AI2ldw<(outs GPR:$dst), (ins addrmode2:$addr), LdFrm, IIC_iLoadr, "ldr", " $dst, $addr", []>; // Loads with zero extension def LDRH : AI3ldh<(outs GPR:$dst), (ins addrmode3:$addr), LdMiscFrm, IIC_iLoadr, "ldr", "h $dst, $addr", [(set GPR:$dst, (zextloadi16 addrmode3:$addr))]>; def LDRB : AI2ldb<(outs GPR:$dst), (ins addrmode2:$addr), LdFrm, IIC_iLoadr, "ldr", "b $dst, $addr", [(set GPR:$dst, (zextloadi8 addrmode2:$addr))]>; // Loads with sign extension def LDRSH : AI3ldsh<(outs GPR:$dst), (ins addrmode3:$addr), LdMiscFrm, IIC_iLoadr, "ldr", "sh $dst, $addr", [(set GPR:$dst, (sextloadi16 addrmode3:$addr))]>; def LDRSB : AI3ldsb<(outs GPR:$dst), (ins addrmode3:$addr), LdMiscFrm, IIC_iLoadr, "ldr", "sb $dst, $addr", [(set GPR:$dst, (sextloadi8 addrmode3:$addr))]>; let mayLoad = 1 in { // Load doubleword def LDRD : AI3ldd<(outs GPR:$dst1, GPR:$dst2), (ins addrmode3:$addr), LdMiscFrm, IIC_iLoadr, "ldr", "d $dst1, $addr", []>, Requires<[IsARM, HasV5TE]>; // Indexed loads def LDR_PRE : AI2ldwpr<(outs GPR:$dst, GPR:$base_wb), (ins addrmode2:$addr), LdFrm, IIC_iLoadru, "ldr", " $dst, $addr!", "$addr.base = $base_wb", []>; def LDR_POST : AI2ldwpo<(outs GPR:$dst, GPR:$base_wb), (ins GPR:$base, am2offset:$offset), LdFrm, IIC_iLoadru, "ldr", " $dst, [$base], $offset", "$base = $base_wb", []>; def LDRH_PRE : AI3ldhpr<(outs GPR:$dst, GPR:$base_wb), (ins addrmode3:$addr), LdMiscFrm, IIC_iLoadru, "ldr", "h $dst, $addr!", "$addr.base = $base_wb", []>; def LDRH_POST : AI3ldhpo<(outs GPR:$dst, GPR:$base_wb), (ins GPR:$base,am3offset:$offset), LdMiscFrm, IIC_iLoadru, "ldr", "h $dst, [$base], $offset", "$base = $base_wb", []>; def LDRB_PRE : AI2ldbpr<(outs GPR:$dst, GPR:$base_wb), (ins addrmode2:$addr), LdFrm, IIC_iLoadru, "ldr", "b $dst, $addr!", "$addr.base = $base_wb", []>; def LDRB_POST : AI2ldbpo<(outs GPR:$dst, GPR:$base_wb), (ins GPR:$base,am2offset:$offset), LdFrm, IIC_iLoadru, "ldr", "b $dst, [$base], $offset", "$base = $base_wb", []>; def LDRSH_PRE : AI3ldshpr<(outs GPR:$dst, GPR:$base_wb), (ins addrmode3:$addr), LdMiscFrm, IIC_iLoadru, "ldr", "sh $dst, $addr!", "$addr.base = $base_wb", []>; def LDRSH_POST: AI3ldshpo<(outs GPR:$dst, GPR:$base_wb), (ins GPR:$base,am3offset:$offset), LdMiscFrm, IIC_iLoadru, "ldr", "sh $dst, [$base], $offset", "$base = $base_wb", []>; def LDRSB_PRE : AI3ldsbpr<(outs GPR:$dst, GPR:$base_wb), (ins addrmode3:$addr), LdMiscFrm, IIC_iLoadru, "ldr", "sb $dst, $addr!", "$addr.base = $base_wb", []>; def LDRSB_POST: AI3ldsbpo<(outs GPR:$dst, GPR:$base_wb), (ins GPR:$base,am3offset:$offset), LdMiscFrm, IIC_iLoadru, "ldr", "sb $dst, [$base], $offset", "$base = $base_wb", []>; } // Store def STR : AI2stw<(outs), (ins GPR:$src, addrmode2:$addr), StFrm, IIC_iStorer, "str", " $src, $addr", [(store GPR:$src, addrmode2:$addr)]>; // Stores with truncate def STRH : AI3sth<(outs), (ins GPR:$src, addrmode3:$addr), StMiscFrm, IIC_iStorer, "str", "h $src, $addr", [(truncstorei16 GPR:$src, addrmode3:$addr)]>; def STRB : AI2stb<(outs), (ins GPR:$src, addrmode2:$addr), StFrm, IIC_iStorer, "str", "b $src, $addr", [(truncstorei8 GPR:$src, addrmode2:$addr)]>; // Store doubleword let mayStore = 1 in def STRD : AI3std<(outs), (ins GPR:$src1, GPR:$src2, addrmode3:$addr), StMiscFrm, IIC_iStorer, "str", "d $src1, $addr", []>, Requires<[IsARM, HasV5TE]>; // Indexed stores def STR_PRE : AI2stwpr<(outs GPR:$base_wb), (ins GPR:$src, GPR:$base, am2offset:$offset), StFrm, IIC_iStoreru, "str", " $src, [$base, $offset]!", "$base = $base_wb", [(set GPR:$base_wb, (pre_store GPR:$src, GPR:$base, am2offset:$offset))]>; def STR_POST : AI2stwpo<(outs GPR:$base_wb), (ins GPR:$src, GPR:$base,am2offset:$offset), StFrm, IIC_iStoreru, "str", " $src, [$base], $offset", "$base = $base_wb", [(set GPR:$base_wb, (post_store GPR:$src, GPR:$base, am2offset:$offset))]>; def STRH_PRE : AI3sthpr<(outs GPR:$base_wb), (ins GPR:$src, GPR:$base,am3offset:$offset), StMiscFrm, IIC_iStoreru, "str", "h $src, [$base, $offset]!", "$base = $base_wb", [(set GPR:$base_wb, (pre_truncsti16 GPR:$src, GPR:$base,am3offset:$offset))]>; def STRH_POST: AI3sthpo<(outs GPR:$base_wb), (ins GPR:$src, GPR:$base,am3offset:$offset), StMiscFrm, IIC_iStoreru, "str", "h $src, [$base], $offset", "$base = $base_wb", [(set GPR:$base_wb, (post_truncsti16 GPR:$src, GPR:$base, am3offset:$offset))]>; def STRB_PRE : AI2stbpr<(outs GPR:$base_wb), (ins GPR:$src, GPR:$base,am2offset:$offset), StFrm, IIC_iStoreru, "str", "b $src, [$base, $offset]!", "$base = $base_wb", [(set GPR:$base_wb, (pre_truncsti8 GPR:$src, GPR:$base, am2offset:$offset))]>; def STRB_POST: AI2stbpo<(outs GPR:$base_wb), (ins GPR:$src, GPR:$base,am2offset:$offset), StFrm, IIC_iStoreru, "str", "b $src, [$base], $offset", "$base = $base_wb", [(set GPR:$base_wb, (post_truncsti8 GPR:$src, GPR:$base, am2offset:$offset))]>; //===----------------------------------------------------------------------===// // Load / store multiple Instructions. // // FIXME: $dst1 should be a def. let mayLoad = 1 in def LDM : AXI4ld<(outs), (ins addrmode4:$addr, pred:$p, reglist:$dst1, variable_ops), LdStMulFrm, IIC_iLoadm, "ldm${p}${addr:submode} $addr, $dst1", []>; let mayStore = 1 in def STM : AXI4st<(outs), (ins addrmode4:$addr, pred:$p, reglist:$src1, variable_ops), LdStMulFrm, IIC_iStorem, "stm${p}${addr:submode} $addr, $src1", []>; //===----------------------------------------------------------------------===// // Move Instructions. // let neverHasSideEffects = 1 in def MOVr : AsI1<0b1101, (outs GPR:$dst), (ins GPR:$src), DPFrm, IIC_iMOVr, "mov", " $dst, $src", []>, UnaryDP; def MOVs : AsI1<0b1101, (outs GPR:$dst), (ins so_reg:$src), DPSoRegFrm, IIC_iMOVsr, "mov", " $dst, $src", [(set GPR:$dst, so_reg:$src)]>, UnaryDP; let isReMaterializable = 1, isAsCheapAsAMove = 1 in def MOVi : AsI1<0b1101, (outs GPR:$dst), (ins so_imm:$src), DPFrm, IIC_iMOVi, "mov", " $dst, $src", [(set GPR:$dst, so_imm:$src)]>, UnaryDP; let Uses = [CPSR] in def MOVrx : AsI1<0b1101, (outs GPR:$dst), (ins GPR:$src), Pseudo, IIC_iMOVsi, "mov", " $dst, $src, rrx", [(set GPR:$dst, (ARMrrx GPR:$src))]>, UnaryDP; // These aren't really mov instructions, but we have to define them this way // due to flag operands. let Defs = [CPSR] in { def MOVsrl_flag : AI1<0b1101, (outs GPR:$dst), (ins GPR:$src), Pseudo, IIC_iMOVsi, "mov", "s $dst, $src, lsr #1", [(set GPR:$dst, (ARMsrl_flag GPR:$src))]>, UnaryDP; def MOVsra_flag : AI1<0b1101, (outs GPR:$dst), (ins GPR:$src), Pseudo, IIC_iMOVsi, "mov", "s $dst, $src, asr #1", [(set GPR:$dst, (ARMsra_flag GPR:$src))]>, UnaryDP; } //===----------------------------------------------------------------------===// // Extend Instructions. // // Sign extenders defm SXTB : AI_unary_rrot<0b01101010, "sxtb", UnOpFrag<(sext_inreg node:$Src, i8)>>; defm SXTH : AI_unary_rrot<0b01101011, "sxth", UnOpFrag<(sext_inreg node:$Src, i16)>>; defm SXTAB : AI_bin_rrot<0b01101010, "sxtab", BinOpFrag<(add node:$LHS, (sext_inreg node:$RHS, i8))>>; defm SXTAH : AI_bin_rrot<0b01101011, "sxtah", BinOpFrag<(add node:$LHS, (sext_inreg node:$RHS,i16))>>; // TODO: SXT(A){B|H}16 // Zero extenders let AddedComplexity = 16 in { defm UXTB : AI_unary_rrot<0b01101110, "uxtb" , UnOpFrag<(and node:$Src, 0x000000FF)>>; defm UXTH : AI_unary_rrot<0b01101111, "uxth" , UnOpFrag<(and node:$Src, 0x0000FFFF)>>; defm UXTB16 : AI_unary_rrot<0b01101100, "uxtb16", UnOpFrag<(and node:$Src, 0x00FF00FF)>>; def : ARMV6Pat<(and (shl GPR:$Src, (i32 8)), 0xFF00FF), (UXTB16r_rot GPR:$Src, 24)>; def : ARMV6Pat<(and (srl GPR:$Src, (i32 8)), 0xFF00FF), (UXTB16r_rot GPR:$Src, 8)>; defm UXTAB : AI_bin_rrot<0b01101110, "uxtab", BinOpFrag<(add node:$LHS, (and node:$RHS, 0x00FF))>>; defm UXTAH : AI_bin_rrot<0b01101111, "uxtah", BinOpFrag<(add node:$LHS, (and node:$RHS, 0xFFFF))>>; } // This isn't safe in general, the add is two 16-bit units, not a 32-bit add. //defm UXTAB16 : xxx<"uxtab16", 0xff00ff>; // TODO: UXT(A){B|H}16 //===----------------------------------------------------------------------===// // Arithmetic Instructions. // defm ADD : AsI1_bin_irs<0b0100, "add", BinOpFrag<(add node:$LHS, node:$RHS)>, 1>; defm SUB : AsI1_bin_irs<0b0010, "sub", BinOpFrag<(sub node:$LHS, node:$RHS)>>; // ADD and SUB with 's' bit set. defm ADDS : AI1_bin_s_irs<0b0100, "add", BinOpFrag<(addc node:$LHS, node:$RHS)>>; defm SUBS : AI1_bin_s_irs<0b0010, "sub", BinOpFrag<(subc node:$LHS, node:$RHS)>>; defm ADC : AI1_adde_sube_irs<0b0101, "adc", BinOpFrag<(adde node:$LHS, node:$RHS)>, 1>; defm SBC : AI1_adde_sube_irs<0b0110, "sbc", BinOpFrag<(sube node:$LHS, node:$RHS)>>; // These don't define reg/reg forms, because they are handled above. def RSBri : AsI1<0b0011, (outs GPR:$dst), (ins GPR:$a, so_imm:$b), DPFrm, IIC_iALUi, "rsb", " $dst, $a, $b", [(set GPR:$dst, (sub so_imm:$b, GPR:$a))]>; def RSBrs : AsI1<0b0011, (outs GPR:$dst), (ins GPR:$a, so_reg:$b), DPSoRegFrm, IIC_iALUsr, "rsb", " $dst, $a, $b", [(set GPR:$dst, (sub so_reg:$b, GPR:$a))]>; // RSB with 's' bit set. let Defs = [CPSR] in { def RSBSri : AI1<0b0011, (outs GPR:$dst), (ins GPR:$a, so_imm:$b), DPFrm, IIC_iALUi, "rsb", "s $dst, $a, $b", [(set GPR:$dst, (subc so_imm:$b, GPR:$a))]>; def RSBSrs : AI1<0b0011, (outs GPR:$dst), (ins GPR:$a, so_reg:$b), DPSoRegFrm, IIC_iALUsr, "rsb", "s $dst, $a, $b", [(set GPR:$dst, (subc so_reg:$b, GPR:$a))]>; } let Uses = [CPSR] in { def RSCri : AsI1<0b0111, (outs GPR:$dst), (ins GPR:$a, so_imm:$b), DPFrm, IIC_iALUi, "rsc", " $dst, $a, $b", [(set GPR:$dst, (sube so_imm:$b, GPR:$a))]>, Requires<[IsARM, CarryDefIsUnused]>; def RSCrs : AsI1<0b0111, (outs GPR:$dst), (ins GPR:$a, so_reg:$b), DPSoRegFrm, IIC_iALUsr, "rsc", " $dst, $a, $b", [(set GPR:$dst, (sube so_reg:$b, GPR:$a))]>, Requires<[IsARM, CarryDefIsUnused]>; } // FIXME: Allow these to be predicated. let Defs = [CPSR], Uses = [CPSR] in { def RSCSri : AXI1<0b0111, (outs GPR:$dst), (ins GPR:$a, so_imm:$b), DPFrm, IIC_iALUi, "rscs $dst, $a, $b", [(set GPR:$dst, (sube so_imm:$b, GPR:$a))]>, Requires<[IsARM, CarryDefIsUnused]>; def RSCSrs : AXI1<0b0111, (outs GPR:$dst), (ins GPR:$a, so_reg:$b), DPSoRegFrm, IIC_iALUsr, "rscs $dst, $a, $b", [(set GPR:$dst, (sube so_reg:$b, GPR:$a))]>, Requires<[IsARM, CarryDefIsUnused]>; } // (sub X, imm) gets canonicalized to (add X, -imm). Match this form. def : ARMPat<(add GPR:$src, so_imm_neg:$imm), (SUBri GPR:$src, so_imm_neg:$imm)>; //def : ARMPat<(addc GPR:$src, so_imm_neg:$imm), // (SUBSri GPR:$src, so_imm_neg:$imm)>; //def : ARMPat<(adde GPR:$src, so_imm_neg:$imm), // (SBCri GPR:$src, so_imm_neg:$imm)>; // Note: These are implemented in C++ code, because they have to generate // ADD/SUBrs instructions, which use a complex pattern that a xform function // cannot produce. // (mul X, 2^n+1) -> (add (X << n), X) // (mul X, 2^n-1) -> (rsb X, (X << n)) //===----------------------------------------------------------------------===// // Bitwise Instructions. // defm AND : AsI1_bin_irs<0b0000, "and", BinOpFrag<(and node:$LHS, node:$RHS)>, 1>; defm ORR : AsI1_bin_irs<0b1100, "orr", BinOpFrag<(or node:$LHS, node:$RHS)>, 1>; defm EOR : AsI1_bin_irs<0b0001, "eor", BinOpFrag<(xor node:$LHS, node:$RHS)>, 1>; defm BIC : AsI1_bin_irs<0b1110, "bic", BinOpFrag<(and node:$LHS, (not node:$RHS))>>; def BFC : I<(outs GPR:$dst), (ins GPR:$src, bf_inv_mask_imm:$imm), AddrMode1, Size4Bytes, IndexModeNone, DPFrm, IIC_iALUi, "bfc", " $dst, $imm", "$src = $dst", [(set GPR:$dst, (and GPR:$src, bf_inv_mask_imm:$imm))]>, Requires<[IsARM, HasV6T2]> { let Inst{27-21} = 0b0111110; let Inst{6-0} = 0b0011111; } def MVNr : AsI1<0b1111, (outs GPR:$dst), (ins GPR:$src), DPFrm, IIC_iMOVr, "mvn", " $dst, $src", [(set GPR:$dst, (not GPR:$src))]>, UnaryDP; def MVNs : AsI1<0b1111, (outs GPR:$dst), (ins so_reg:$src), DPSoRegFrm, IIC_iMOVsr, "mvn", " $dst, $src", [(set GPR:$dst, (not so_reg:$src))]>, UnaryDP; let isReMaterializable = 1, isAsCheapAsAMove = 1 in def MVNi : AsI1<0b1111, (outs GPR:$dst), (ins so_imm:$imm), DPFrm, IIC_iMOVi, "mvn", " $dst, $imm", [(set GPR:$dst, so_imm_not:$imm)]>,UnaryDP; def : ARMPat<(and GPR:$src, so_imm_not:$imm), (BICri GPR:$src, so_imm_not:$imm)>; //===----------------------------------------------------------------------===// // Multiply Instructions. // let isCommutable = 1 in def MUL : AsMul1I<0b0000000, (outs GPR:$dst), (ins GPR:$a, GPR:$b), IIC_iMUL32, "mul", " $dst, $a, $b", [(set GPR:$dst, (mul GPR:$a, GPR:$b))]>; def MLA : AsMul1I<0b0000001, (outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$c), IIC_iMAC32, "mla", " $dst, $a, $b, $c", [(set GPR:$dst, (add (mul GPR:$a, GPR:$b), GPR:$c))]>; def MLS : AMul1I<0b0000011, (outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$c), IIC_iMAC32, "mls", " $dst, $a, $b, $c", [(set GPR:$dst, (sub GPR:$c, (mul GPR:$a, GPR:$b)))]>, Requires<[IsARM, HasV6T2]>; // Extra precision multiplies with low / high results let neverHasSideEffects = 1 in { let isCommutable = 1 in { def SMULL : AsMul1I<0b0000110, (outs GPR:$ldst, GPR:$hdst), (ins GPR:$a, GPR:$b), IIC_iMUL64, "smull", " $ldst, $hdst, $a, $b", []>; def UMULL : AsMul1I<0b0000100, (outs GPR:$ldst, GPR:$hdst), (ins GPR:$a, GPR:$b), IIC_iMUL64, "umull", " $ldst, $hdst, $a, $b", []>; } // Multiply + accumulate def SMLAL : AsMul1I<0b0000111, (outs GPR:$ldst, GPR:$hdst), (ins GPR:$a, GPR:$b), IIC_iMAC64, "smlal", " $ldst, $hdst, $a, $b", []>; def UMLAL : AsMul1I<0b0000101, (outs GPR:$ldst, GPR:$hdst), (ins GPR:$a, GPR:$b), IIC_iMAC64, "umlal", " $ldst, $hdst, $a, $b", []>; def UMAAL : AMul1I <0b0000010, (outs GPR:$ldst, GPR:$hdst), (ins GPR:$a, GPR:$b), IIC_iMAC64, "umaal", " $ldst, $hdst, $a, $b", []>, Requires<[IsARM, HasV6]>; } // neverHasSideEffects // Most significant word multiply def SMMUL : AMul2I <0b0111010, (outs GPR:$dst), (ins GPR:$a, GPR:$b), IIC_iMUL32, "smmul", " $dst, $a, $b", [(set GPR:$dst, (mulhs GPR:$a, GPR:$b))]>, Requires<[IsARM, HasV6]> { let Inst{7-4} = 0b0001; let Inst{15-12} = 0b1111; } def SMMLA : AMul2I <0b0111010, (outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$c), IIC_iMAC32, "smmla", " $dst, $a, $b, $c", [(set GPR:$dst, (add (mulhs GPR:$a, GPR:$b), GPR:$c))]>, Requires<[IsARM, HasV6]> { let Inst{7-4} = 0b0001; } def SMMLS : AMul2I <0b0111010, (outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$c), IIC_iMAC32, "smmls", " $dst, $a, $b, $c", [(set GPR:$dst, (sub GPR:$c, (mulhs GPR:$a, GPR:$b)))]>, Requires<[IsARM, HasV6]> { let Inst{7-4} = 0b1101; } multiclass AI_smul { def BB : AMulxyI<0b0001011, (outs GPR:$dst), (ins GPR:$a, GPR:$b), IIC_iMUL32, !strconcat(opc, "bb"), " $dst, $a, $b", [(set GPR:$dst, (opnode (sext_inreg GPR:$a, i16), (sext_inreg GPR:$b, i16)))]>, Requires<[IsARM, HasV5TE]> { let Inst{5} = 0; let Inst{6} = 0; } def BT : AMulxyI<0b0001011, (outs GPR:$dst), (ins GPR:$a, GPR:$b), IIC_iMUL32, !strconcat(opc, "bt"), " $dst, $a, $b", [(set GPR:$dst, (opnode (sext_inreg GPR:$a, i16), (sra GPR:$b, (i32 16))))]>, Requires<[IsARM, HasV5TE]> { let Inst{5} = 0; let Inst{6} = 1; } def TB : AMulxyI<0b0001011, (outs GPR:$dst), (ins GPR:$a, GPR:$b), IIC_iMUL32, !strconcat(opc, "tb"), " $dst, $a, $b", [(set GPR:$dst, (opnode (sra GPR:$a, (i32 16)), (sext_inreg GPR:$b, i16)))]>, Requires<[IsARM, HasV5TE]> { let Inst{5} = 1; let Inst{6} = 0; } def TT : AMulxyI<0b0001011, (outs GPR:$dst), (ins GPR:$a, GPR:$b), IIC_iMUL32, !strconcat(opc, "tt"), " $dst, $a, $b", [(set GPR:$dst, (opnode (sra GPR:$a, (i32 16)), (sra GPR:$b, (i32 16))))]>, Requires<[IsARM, HasV5TE]> { let Inst{5} = 1; let Inst{6} = 1; } def WB : AMulxyI<0b0001001, (outs GPR:$dst), (ins GPR:$a, GPR:$b), IIC_iMUL16, !strconcat(opc, "wb"), " $dst, $a, $b", [(set GPR:$dst, (sra (opnode GPR:$a, (sext_inreg GPR:$b, i16)), (i32 16)))]>, Requires<[IsARM, HasV5TE]> { let Inst{5} = 1; let Inst{6} = 0; } def WT : AMulxyI<0b0001001, (outs GPR:$dst), (ins GPR:$a, GPR:$b), IIC_iMUL16, !strconcat(opc, "wt"), " $dst, $a, $b", [(set GPR:$dst, (sra (opnode GPR:$a, (sra GPR:$b, (i32 16))), (i32 16)))]>, Requires<[IsARM, HasV5TE]> { let Inst{5} = 1; let Inst{6} = 1; } } multiclass AI_smla { def BB : AMulxyI<0b0001000, (outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$acc), IIC_iMAC16, !strconcat(opc, "bb"), " $dst, $a, $b, $acc", [(set GPR:$dst, (add GPR:$acc, (opnode (sext_inreg GPR:$a, i16), (sext_inreg GPR:$b, i16))))]>, Requires<[IsARM, HasV5TE]> { let Inst{5} = 0; let Inst{6} = 0; } def BT : AMulxyI<0b0001000, (outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$acc), IIC_iMAC16, !strconcat(opc, "bt"), " $dst, $a, $b, $acc", [(set GPR:$dst, (add GPR:$acc, (opnode (sext_inreg GPR:$a, i16), (sra GPR:$b, (i32 16)))))]>, Requires<[IsARM, HasV5TE]> { let Inst{5} = 0; let Inst{6} = 1; } def TB : AMulxyI<0b0001000, (outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$acc), IIC_iMAC16, !strconcat(opc, "tb"), " $dst, $a, $b, $acc", [(set GPR:$dst, (add GPR:$acc, (opnode (sra GPR:$a, (i32 16)), (sext_inreg GPR:$b, i16))))]>, Requires<[IsARM, HasV5TE]> { let Inst{5} = 1; let Inst{6} = 0; } def TT : AMulxyI<0b0001000, (outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$acc), IIC_iMAC16, !strconcat(opc, "tt"), " $dst, $a, $b, $acc", [(set GPR:$dst, (add GPR:$acc, (opnode (sra GPR:$a, (i32 16)), (sra GPR:$b, (i32 16)))))]>, Requires<[IsARM, HasV5TE]> { let Inst{5} = 1; let Inst{6} = 1; } def WB : AMulxyI<0b0001001, (outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$acc), IIC_iMAC16, !strconcat(opc, "wb"), " $dst, $a, $b, $acc", [(set GPR:$dst, (add GPR:$acc, (sra (opnode GPR:$a, (sext_inreg GPR:$b, i16)), (i32 16))))]>, Requires<[IsARM, HasV5TE]> { let Inst{5} = 0; let Inst{6} = 0; } def WT : AMulxyI<0b0001001, (outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$acc), IIC_iMAC16, !strconcat(opc, "wt"), " $dst, $a, $b, $acc", [(set GPR:$dst, (add GPR:$acc, (sra (opnode GPR:$a, (sra GPR:$b, (i32 16))), (i32 16))))]>, Requires<[IsARM, HasV5TE]> { let Inst{5} = 0; let Inst{6} = 1; } } defm SMUL : AI_smul<"smul", BinOpFrag<(mul node:$LHS, node:$RHS)>>; defm SMLA : AI_smla<"smla", BinOpFrag<(mul node:$LHS, node:$RHS)>>; // TODO: Halfword multiple accumulate long: SMLAL // TODO: Dual halfword multiple: SMUAD, SMUSD, SMLAD, SMLSD, SMLALD, SMLSLD //===----------------------------------------------------------------------===// // Misc. Arithmetic Instructions. // def CLZ : AMiscA1I<0b000010110, (outs GPR:$dst), (ins GPR:$src), IIC_iUNAr, "clz", " $dst, $src", [(set GPR:$dst, (ctlz GPR:$src))]>, Requires<[IsARM, HasV5T]> { let Inst{7-4} = 0b0001; let Inst{11-8} = 0b1111; let Inst{19-16} = 0b1111; } def REV : AMiscA1I<0b01101011, (outs GPR:$dst), (ins GPR:$src), IIC_iUNAr, "rev", " $dst, $src", [(set GPR:$dst, (bswap GPR:$src))]>, Requires<[IsARM, HasV6]> { let Inst{7-4} = 0b0011; let Inst{11-8} = 0b1111; let Inst{19-16} = 0b1111; } def REV16 : AMiscA1I<0b01101011, (outs GPR:$dst), (ins GPR:$src), IIC_iUNAr, "rev16", " $dst, $src", [(set GPR:$dst, (or (and (srl GPR:$src, (i32 8)), 0xFF), (or (and (shl GPR:$src, (i32 8)), 0xFF00), (or (and (srl GPR:$src, (i32 8)), 0xFF0000), (and (shl GPR:$src, (i32 8)), 0xFF000000)))))]>, Requires<[IsARM, HasV6]> { let Inst{7-4} = 0b1011; let Inst{11-8} = 0b1111; let Inst{19-16} = 0b1111; } def REVSH : AMiscA1I<0b01101111, (outs GPR:$dst), (ins GPR:$src), IIC_iUNAr, "revsh", " $dst, $src", [(set GPR:$dst, (sext_inreg (or (srl (and GPR:$src, 0xFF00), (i32 8)), (shl GPR:$src, (i32 8))), i16))]>, Requires<[IsARM, HasV6]> { let Inst{7-4} = 0b1011; let Inst{11-8} = 0b1111; let Inst{19-16} = 0b1111; } def PKHBT : AMiscA1I<0b01101000, (outs GPR:$dst), (ins GPR:$src1, GPR:$src2, i32imm:$shamt), IIC_iALUsi, "pkhbt", " $dst, $src1, $src2, LSL $shamt", [(set GPR:$dst, (or (and GPR:$src1, 0xFFFF), (and (shl GPR:$src2, (i32 imm:$shamt)), 0xFFFF0000)))]>, Requires<[IsARM, HasV6]> { let Inst{6-4} = 0b001; } // Alternate cases for PKHBT where identities eliminate some nodes. def : ARMV6Pat<(or (and GPR:$src1, 0xFFFF), (and GPR:$src2, 0xFFFF0000)), (PKHBT GPR:$src1, GPR:$src2, 0)>; def : ARMV6Pat<(or (and GPR:$src1, 0xFFFF), (shl GPR:$src2, imm16_31:$shamt)), (PKHBT GPR:$src1, GPR:$src2, imm16_31:$shamt)>; def PKHTB : AMiscA1I<0b01101000, (outs GPR:$dst), (ins GPR:$src1, GPR:$src2, i32imm:$shamt), IIC_iALUsi, "pkhtb", " $dst, $src1, $src2, ASR $shamt", [(set GPR:$dst, (or (and GPR:$src1, 0xFFFF0000), (and (sra GPR:$src2, imm16_31:$shamt), 0xFFFF)))]>, Requires<[IsARM, HasV6]> { let Inst{6-4} = 0b101; } // Alternate cases for PKHTB where identities eliminate some nodes. Note that // a shift amount of 0 is *not legal* here, it is PKHBT instead. def : ARMV6Pat<(or (and GPR:$src1, 0xFFFF0000), (srl GPR:$src2, (i32 16))), (PKHTB GPR:$src1, GPR:$src2, 16)>; def : ARMV6Pat<(or (and GPR:$src1, 0xFFFF0000), (and (srl GPR:$src2, imm1_15:$shamt), 0xFFFF)), (PKHTB GPR:$src1, GPR:$src2, imm1_15:$shamt)>; //===----------------------------------------------------------------------===// // Comparison Instructions... // defm CMP : AI1_cmp_irs<0b1010, "cmp", BinOpFrag<(ARMcmp node:$LHS, node:$RHS)>>; defm CMN : AI1_cmp_irs<0b1011, "cmn", BinOpFrag<(ARMcmp node:$LHS,(ineg node:$RHS))>>; // Note that TST/TEQ don't set all the same flags that CMP does! defm TST : AI1_cmp_irs<0b1000, "tst", BinOpFrag<(ARMcmpZ (and node:$LHS, node:$RHS), 0)>, 1>; defm TEQ : AI1_cmp_irs<0b1001, "teq", BinOpFrag<(ARMcmpZ (xor node:$LHS, node:$RHS), 0)>, 1>; defm CMPz : AI1_cmp_irs<0b1010, "cmp", BinOpFrag<(ARMcmpZ node:$LHS, node:$RHS)>>; defm CMNz : AI1_cmp_irs<0b1011, "cmn", BinOpFrag<(ARMcmpZ node:$LHS,(ineg node:$RHS))>>; def : ARMPat<(ARMcmp GPR:$src, so_imm_neg:$imm), (CMNri GPR:$src, so_imm_neg:$imm)>; def : ARMPat<(ARMcmpZ GPR:$src, so_imm_neg:$imm), (CMNri GPR:$src, so_imm_neg:$imm)>; // Conditional moves // FIXME: should be able to write a pattern for ARMcmov, but can't use // a two-value operand where a dag node expects two operands. :( def MOVCCr : AI1<0b1101, (outs GPR:$dst), (ins GPR:$false, GPR:$true), DPFrm, IIC_iCMOVr, "mov", " $dst, $true", [/*(set GPR:$dst, (ARMcmov GPR:$false, GPR:$true, imm:$cc, CCR:$ccr))*/]>, RegConstraint<"$false = $dst">, UnaryDP; def MOVCCs : AI1<0b1101, (outs GPR:$dst), (ins GPR:$false, so_reg:$true), DPSoRegFrm, IIC_iCMOVsr, "mov", " $dst, $true", [/*(set GPR:$dst, (ARMcmov GPR:$false, so_reg:$true, imm:$cc, CCR:$ccr))*/]>, RegConstraint<"$false = $dst">, UnaryDP; def MOVCCi : AI1<0b1101, (outs GPR:$dst), (ins GPR:$false, so_imm:$true), DPFrm, IIC_iCMOVi, "mov", " $dst, $true", [/*(set GPR:$dst, (ARMcmov GPR:$false, so_imm:$true, imm:$cc, CCR:$ccr))*/]>, RegConstraint<"$false = $dst">, UnaryDP; //===----------------------------------------------------------------------===// // TLS Instructions // // __aeabi_read_tp preserves the registers r1-r3. let isCall = 1, Defs = [R0, R12, LR, CPSR] in { def TPsoft : ABXI<0b1011, (outs), (ins), IIC_Br, "bl __aeabi_read_tp", [(set R0, ARMthread_pointer)]>; } //===----------------------------------------------------------------------===// // SJLJ Exception handling intrinsics // eh_sjlj_setjmp() is an instruction sequence to store the return // address and save #0 in R0 for the non-longjmp case. // Since by its nature we may be coming from some other function to get // here, and we're using the stack frame for the containing function to // save/restore registers, we can't keep anything live in regs across // the eh_sjlj_setjmp(), else it will almost certainly have been tromped upon // when we get here from a longjmp(). We force everthing out of registers // except for our own input by listing the relevant registers in Defs. By // doing so, we also cause the prologue/epilogue code to actively preserve // all of the callee-saved resgisters, which is exactly what we want. let Defs = [ R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, LR, D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15, D16, D17, D18, D19, D20, D21, D22, D23, D24, D25, D26, D27, D28, D29, D30, D31 ] in { def Int_eh_sjlj_setjmp : XI<(outs), (ins GPR:$src), AddrModeNone, SizeSpecial, IndexModeNone, Pseudo, NoItinerary, "str sp, [$src, #+8] @ eh_setjmp begin\n\t" "add r12, pc, #8\n\t" "str r12, [$src, #+4]\n\t" "mov r0, #0\n\t" "add pc, pc, #0\n\t" "mov r0, #1 @ eh_setjmp end", "", [(set R0, (ARMeh_sjlj_setjmp GPR:$src))]>; } //===----------------------------------------------------------------------===// // Non-Instruction Patterns // // ConstantPool, GlobalAddress, and JumpTable def : ARMPat<(ARMWrapper tglobaladdr :$dst), (LEApcrel tglobaladdr :$dst)>; def : ARMPat<(ARMWrapper tconstpool :$dst), (LEApcrel tconstpool :$dst)>; def : ARMPat<(ARMWrapperJT tjumptable:$dst, imm:$id), (LEApcrelJT tjumptable:$dst, imm:$id)>; // Large immediate handling. // Two piece so_imms. let isReMaterializable = 1 in def MOVi2pieces : AI1x2<(outs GPR:$dst), (ins so_imm2part:$src), Pseudo, IIC_iMOVi, "mov", " $dst, $src", [(set GPR:$dst, so_imm2part:$src)]>; def : ARMPat<(or GPR:$LHS, so_imm2part:$RHS), (ORRri (ORRri GPR:$LHS, (so_imm2part_1 imm:$RHS)), (so_imm2part_2 imm:$RHS))>; def : ARMPat<(xor GPR:$LHS, so_imm2part:$RHS), (EORri (EORri GPR:$LHS, (so_imm2part_1 imm:$RHS)), (so_imm2part_2 imm:$RHS))>; // TODO: add,sub,and, 3-instr forms? // Direct calls def : ARMPat<(ARMcall texternalsym:$func), (BL texternalsym:$func)>, Requires<[IsARM, IsNotDarwin]>; def : ARMPat<(ARMcall texternalsym:$func), (BLr9 texternalsym:$func)>, Requires<[IsARM, IsDarwin]>; // zextload i1 -> zextload i8 def : ARMPat<(zextloadi1 addrmode2:$addr), (LDRB addrmode2:$addr)>; // extload -> zextload def : ARMPat<(extloadi1 addrmode2:$addr), (LDRB addrmode2:$addr)>; def : ARMPat<(extloadi8 addrmode2:$addr), (LDRB addrmode2:$addr)>; def : ARMPat<(extloadi16 addrmode3:$addr), (LDRH addrmode3:$addr)>; def : ARMPat<(extloadi8 addrmodepc:$addr), (PICLDRB addrmodepc:$addr)>; def : ARMPat<(extloadi16 addrmodepc:$addr), (PICLDRH addrmodepc:$addr)>; // smul* and smla* def : ARMV5TEPat<(mul (sra (shl GPR:$a, (i32 16)), (i32 16)), (sra (shl GPR:$b, (i32 16)), (i32 16))), (SMULBB GPR:$a, GPR:$b)>; def : ARMV5TEPat<(mul sext_16_node:$a, sext_16_node:$b), (SMULBB GPR:$a, GPR:$b)>; def : ARMV5TEPat<(mul (sra (shl GPR:$a, (i32 16)), (i32 16)), (sra GPR:$b, (i32 16))), (SMULBT GPR:$a, GPR:$b)>; def : ARMV5TEPat<(mul sext_16_node:$a, (sra GPR:$b, (i32 16))), (SMULBT GPR:$a, GPR:$b)>; def : ARMV5TEPat<(mul (sra GPR:$a, (i32 16)), (sra (shl GPR:$b, (i32 16)), (i32 16))), (SMULTB GPR:$a, GPR:$b)>; def : ARMV5TEPat<(mul (sra GPR:$a, (i32 16)), sext_16_node:$b), (SMULTB GPR:$a, GPR:$b)>; def : ARMV5TEPat<(sra (mul GPR:$a, (sra (shl GPR:$b, (i32 16)), (i32 16))), (i32 16)), (SMULWB GPR:$a, GPR:$b)>; def : ARMV5TEPat<(sra (mul GPR:$a, sext_16_node:$b), (i32 16)), (SMULWB GPR:$a, GPR:$b)>; def : ARMV5TEPat<(add GPR:$acc, (mul (sra (shl GPR:$a, (i32 16)), (i32 16)), (sra (shl GPR:$b, (i32 16)), (i32 16)))), (SMLABB GPR:$a, GPR:$b, GPR:$acc)>; def : ARMV5TEPat<(add GPR:$acc, (mul sext_16_node:$a, sext_16_node:$b)), (SMLABB GPR:$a, GPR:$b, GPR:$acc)>; def : ARMV5TEPat<(add GPR:$acc, (mul (sra (shl GPR:$a, (i32 16)), (i32 16)), (sra GPR:$b, (i32 16)))), (SMLABT GPR:$a, GPR:$b, GPR:$acc)>; def : ARMV5TEPat<(add GPR:$acc, (mul sext_16_node:$a, (sra GPR:$b, (i32 16)))), (SMLABT GPR:$a, GPR:$b, GPR:$acc)>; def : ARMV5TEPat<(add GPR:$acc, (mul (sra GPR:$a, (i32 16)), (sra (shl GPR:$b, (i32 16)), (i32 16)))), (SMLATB GPR:$a, GPR:$b, GPR:$acc)>; def : ARMV5TEPat<(add GPR:$acc, (mul (sra GPR:$a, (i32 16)), sext_16_node:$b)), (SMLATB GPR:$a, GPR:$b, GPR:$acc)>; def : ARMV5TEPat<(add GPR:$acc, (sra (mul GPR:$a, (sra (shl GPR:$b, (i32 16)), (i32 16))), (i32 16))), (SMLAWB GPR:$a, GPR:$b, GPR:$acc)>; def : ARMV5TEPat<(add GPR:$acc, (sra (mul GPR:$a, sext_16_node:$b), (i32 16))), (SMLAWB GPR:$a, GPR:$b, GPR:$acc)>; //===----------------------------------------------------------------------===// // Thumb Support // include "ARMInstrThumb.td" //===----------------------------------------------------------------------===// // Thumb2 Support // include "ARMInstrThumb2.td" //===----------------------------------------------------------------------===// // Floating Point Support // include "ARMInstrVFP.td" //===----------------------------------------------------------------------===// // Advanced SIMD (NEON) Support // include "ARMInstrNEON.td"