//===--- ScheduleDAGSDNodes.cpp - Implement the ScheduleDAGSDNodes class --===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This implements the ScheduleDAG class, which is a base class used by // scheduling implementation classes. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "pre-RA-sched" #include "llvm/CodeGen/ScheduleDAGSDNodes.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; ScheduleDAGSDNodes::ScheduleDAGSDNodes(SelectionDAG *dag, MachineBasicBlock *bb, const TargetMachine &tm) : ScheduleDAG(dag, bb, tm) { } SUnit *ScheduleDAGSDNodes::Clone(SUnit *Old) { SUnit *SU = NewSUnit(Old->getNode()); SU->OrigNode = Old->OrigNode; SU->Latency = Old->Latency; SU->isTwoAddress = Old->isTwoAddress; SU->isCommutable = Old->isCommutable; SU->hasPhysRegDefs = Old->hasPhysRegDefs; return SU; } /// CheckForPhysRegDependency - Check if the dependency between def and use of /// a specified operand is a physical register dependency. If so, returns the /// register and the cost of copying the register. static void CheckForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op, const TargetRegisterInfo *TRI, const TargetInstrInfo *TII, unsigned &PhysReg, int &Cost) { if (Op != 2 || User->getOpcode() != ISD::CopyToReg) return; unsigned Reg = cast(User->getOperand(1))->getReg(); if (TargetRegisterInfo::isVirtualRegister(Reg)) return; unsigned ResNo = User->getOperand(2).getResNo(); if (Def->isMachineOpcode()) { const TargetInstrDesc &II = TII->get(Def->getMachineOpcode()); if (ResNo >= II.getNumDefs() && II.ImplicitDefs[ResNo - II.getNumDefs()] == Reg) { PhysReg = Reg; const TargetRegisterClass *RC = TRI->getPhysicalRegisterRegClass(Reg, Def->getValueType(ResNo)); Cost = RC->getCopyCost(); } } } void ScheduleDAGSDNodes::BuildSchedUnits() { // During scheduling, the NodeId field of SDNode is used to map SDNodes // to their associated SUnits by holding SUnits table indices. A value // of -1 means the SDNode does not yet have an associated SUnit. unsigned NumNodes = 0; for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(), E = DAG->allnodes_end(); NI != E; ++NI) { NI->setNodeId(-1); ++NumNodes; } // Reserve entries in the vector for each of the SUnits we are creating. This // ensure that reallocation of the vector won't happen, so SUnit*'s won't get // invalidated. // FIXME: Multiply by 2 because we may clone nodes during scheduling. // This is a temporary workaround. SUnits.reserve(NumNodes * 2); // Check to see if the scheduler cares about latencies. bool UnitLatencies = ForceUnitLatencies(); for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(), E = DAG->allnodes_end(); NI != E; ++NI) { if (isPassiveNode(NI)) // Leaf node, e.g. a TargetImmediate. continue; // If this node has already been processed, stop now. if (NI->getNodeId() != -1) continue; SUnit *NodeSUnit = NewSUnit(NI); // See if anything is flagged to this node, if so, add them to flagged // nodes. Nodes can have at most one flag input and one flag output. Flags // are required the be the last operand and result of a node. // Scan up to find flagged preds. SDNode *N = NI; if (N->getNumOperands() && N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag) { do { N = N->getOperand(N->getNumOperands()-1).getNode(); assert(N->getNodeId() == -1 && "Node already inserted!"); N->setNodeId(NodeSUnit->NodeNum); } while (N->getNumOperands() && N->getOperand(N->getNumOperands()-1).getValueType()== MVT::Flag); } // Scan down to find any flagged succs. N = NI; while (N->getValueType(N->getNumValues()-1) == MVT::Flag) { SDValue FlagVal(N, N->getNumValues()-1); // There are either zero or one users of the Flag result. bool HasFlagUse = false; for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); UI != E; ++UI) if (FlagVal.isOperandOf(*UI)) { HasFlagUse = true; assert(N->getNodeId() == -1 && "Node already inserted!"); N->setNodeId(NodeSUnit->NodeNum); N = *UI; break; } if (!HasFlagUse) break; } // If there are flag operands involved, N is now the bottom-most node // of the sequence of nodes that are flagged together. // Update the SUnit. NodeSUnit->setNode(N); assert(N->getNodeId() == -1 && "Node already inserted!"); N->setNodeId(NodeSUnit->NodeNum); // Assign the Latency field of NodeSUnit using target-provided information. if (UnitLatencies) NodeSUnit->Latency = 1; else ComputeLatency(NodeSUnit); } } void ScheduleDAGSDNodes::AddSchedEdges() { // Pass 2: add the preds, succs, etc. for (unsigned su = 0, e = SUnits.size(); su != e; ++su) { SUnit *SU = &SUnits[su]; SDNode *MainNode = SU->getNode(); if (MainNode->isMachineOpcode()) { unsigned Opc = MainNode->getMachineOpcode(); const TargetInstrDesc &TID = TII->get(Opc); for (unsigned i = 0; i != TID.getNumOperands(); ++i) { if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1) { SU->isTwoAddress = true; break; } } if (TID.isCommutable()) SU->isCommutable = true; } // Find all predecessors and successors of the group. for (SDNode *N = SU->getNode(); N; N = N->getFlaggedNode()) { if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).getImplicitDefs() && CountResults(N) > TII->get(N->getMachineOpcode()).getNumDefs()) SU->hasPhysRegDefs = true; for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { SDNode *OpN = N->getOperand(i).getNode(); if (isPassiveNode(OpN)) continue; // Not scheduled. SUnit *OpSU = &SUnits[OpN->getNodeId()]; assert(OpSU && "Node has no SUnit!"); if (OpSU == SU) continue; // In the same group. MVT OpVT = N->getOperand(i).getValueType(); assert(OpVT != MVT::Flag && "Flagged nodes should be in same sunit!"); bool isChain = OpVT == MVT::Other; unsigned PhysReg = 0; int Cost = 1; // Determine if this is a physical register dependency. CheckForPhysRegDependency(OpN, N, i, TRI, TII, PhysReg, Cost); assert((PhysReg == 0 || !isChain) && "Chain dependence via physreg data?"); // FIXME: See ScheduleDAGSDNodes::EmitCopyFromReg. For now, scheduler // emits a copy from the physical register to a virtual register unless // it requires a cross class copy (cost < 0). That means we are only // treating "expensive to copy" register dependency as physical register // dependency. This may change in the future though. if (Cost >= 0) PhysReg = 0; SU->addPred(SDep(OpSU, isChain ? SDep::Order : SDep::Data, OpSU->Latency, PhysReg)); } } } } /// BuildSchedGraph - Build the SUnit graph from the selection dag that we /// are input. This SUnit graph is similar to the SelectionDAG, but /// excludes nodes that aren't interesting to scheduling, and represents /// flagged together nodes with a single SUnit. void ScheduleDAGSDNodes::BuildSchedGraph() { // Populate the SUnits array. BuildSchedUnits(); // Compute all the scheduling dependencies between nodes. AddSchedEdges(); } void ScheduleDAGSDNodes::ComputeLatency(SUnit *SU) { const InstrItineraryData &InstrItins = TM.getInstrItineraryData(); // Compute the latency for the node. We use the sum of the latencies for // all nodes flagged together into this SUnit. SU->Latency = 0; bool SawMachineOpcode = false; for (SDNode *N = SU->getNode(); N; N = N->getFlaggedNode()) if (N->isMachineOpcode()) { SawMachineOpcode = true; SU->Latency += InstrItins.getLatency(TII->get(N->getMachineOpcode()).getSchedClass()); } } /// CountResults - The results of target nodes have register or immediate /// operands first, then an optional chain, and optional flag operands (which do /// not go into the resulting MachineInstr). unsigned ScheduleDAGSDNodes::CountResults(SDNode *Node) { unsigned N = Node->getNumValues(); while (N && Node->getValueType(N - 1) == MVT::Flag) --N; if (N && Node->getValueType(N - 1) == MVT::Other) --N; // Skip over chain result. return N; } /// CountOperands - The inputs to target nodes have any actual inputs first, /// followed by special operands that describe memory references, then an /// optional chain operand, then an optional flag operand. Compute the number /// of actual operands that will go into the resulting MachineInstr. unsigned ScheduleDAGSDNodes::CountOperands(SDNode *Node) { unsigned N = ComputeMemOperandsEnd(Node); while (N && isa(Node->getOperand(N - 1).getNode())) --N; // Ignore MEMOPERAND nodes return N; } /// ComputeMemOperandsEnd - Find the index one past the last MemOperandSDNode /// operand unsigned ScheduleDAGSDNodes::ComputeMemOperandsEnd(SDNode *Node) { unsigned N = Node->getNumOperands(); while (N && Node->getOperand(N - 1).getValueType() == MVT::Flag) --N; if (N && Node->getOperand(N - 1).getValueType() == MVT::Other) --N; // Ignore chain if it exists. return N; } void ScheduleDAGSDNodes::dumpNode(const SUnit *SU) const { if (!SU->getNode()) { cerr << "PHYS REG COPY\n"; return; } SU->getNode()->dump(DAG); cerr << "\n"; SmallVector FlaggedNodes; for (SDNode *N = SU->getNode()->getFlaggedNode(); N; N = N->getFlaggedNode()) FlaggedNodes.push_back(N); while (!FlaggedNodes.empty()) { cerr << " "; FlaggedNodes.back()->dump(DAG); cerr << "\n"; FlaggedNodes.pop_back(); } }