//===-- Execution.cpp - Implement code to simulate the program ------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the actual instruction interpreter. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "interpreter" #include "Interpreter.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Instructions.h" #include "llvm/CodeGen/IntrinsicLowering.h" #include "llvm/Support/GetElementPtrTypeIterator.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/Statistic.h" #include "llvm/Support/Debug.h" #include "llvm/Support/MathExtras.h" #include using namespace llvm; STATISTIC(NumDynamicInsts, "Number of dynamic instructions executed"); static Interpreter *TheEE = 0; //===----------------------------------------------------------------------===// // Various Helper Functions //===----------------------------------------------------------------------===// static inline uint64_t doSignExtension(uint64_t Val, const IntegerType* ITy) { // Determine if the value is signed or not bool isSigned = (Val & (1 << (ITy->getBitWidth()-1))) != 0; // If its signed, extend the sign bits if (isSigned) Val |= ~ITy->getBitMask(); return Val; } static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) { SF.Values[V] = Val; } void Interpreter::initializeExecutionEngine() { TheEE = this; } //===----------------------------------------------------------------------===// // Binary Instruction Implementations //===----------------------------------------------------------------------===// #define IMPLEMENT_BINARY_OPERATOR(OP, TY) \ case Type::TY##TyID: \ Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; \ break #define IMPLEMENT_INTEGER_BINOP1(OP, TY) \ case Type::IntegerTyID: { \ Dest.IntVal = Src1.IntVal OP Src2.IntVal; \ break; \ } static void executeAddInst(GenericValue &Dest, GenericValue Src1, GenericValue Src2, const Type *Ty) { switch (Ty->getTypeID()) { IMPLEMENT_INTEGER_BINOP1(+, Ty); IMPLEMENT_BINARY_OPERATOR(+, Float); IMPLEMENT_BINARY_OPERATOR(+, Double); default: cerr << "Unhandled type for Add instruction: " << *Ty << "\n"; abort(); } } static void executeSubInst(GenericValue &Dest, GenericValue Src1, GenericValue Src2, const Type *Ty) { switch (Ty->getTypeID()) { IMPLEMENT_INTEGER_BINOP1(-, Ty); IMPLEMENT_BINARY_OPERATOR(-, Float); IMPLEMENT_BINARY_OPERATOR(-, Double); default: cerr << "Unhandled type for Sub instruction: " << *Ty << "\n"; abort(); } } static void executeMulInst(GenericValue &Dest, GenericValue Src1, GenericValue Src2, const Type *Ty) { switch (Ty->getTypeID()) { IMPLEMENT_INTEGER_BINOP1(*, Ty); IMPLEMENT_BINARY_OPERATOR(*, Float); IMPLEMENT_BINARY_OPERATOR(*, Double); default: cerr << "Unhandled type for Mul instruction: " << *Ty << "\n"; abort(); } } static void executeFDivInst(GenericValue &Dest, GenericValue Src1, GenericValue Src2, const Type *Ty) { switch (Ty->getTypeID()) { IMPLEMENT_BINARY_OPERATOR(/, Float); IMPLEMENT_BINARY_OPERATOR(/, Double); default: cerr << "Unhandled type for FDiv instruction: " << *Ty << "\n"; abort(); } } static void executeFRemInst(GenericValue &Dest, GenericValue Src1, GenericValue Src2, const Type *Ty) { switch (Ty->getTypeID()) { case Type::FloatTyID: Dest.FloatVal = fmod(Src1.FloatVal, Src2.FloatVal); break; case Type::DoubleTyID: Dest.DoubleVal = fmod(Src1.DoubleVal, Src2.DoubleVal); break; default: cerr << "Unhandled type for Rem instruction: " << *Ty << "\n"; abort(); } } #define IMPLEMENT_INTEGER_ICMP(OP, TY) \ case Type::IntegerTyID: \ Dest.IntVal = APInt(1,Src1.IntVal.OP(Src2.IntVal)); \ break; // Handle pointers specially because they must be compared with only as much // width as the host has. We _do not_ want to be comparing 64 bit values when // running on a 32-bit target, otherwise the upper 32 bits might mess up // comparisons if they contain garbage. #define IMPLEMENT_POINTER_ICMP(OP) \ case Type::PointerTyID: \ Dest.IntVal = APInt(1,(void*)(intptr_t)Src1.PointerVal OP \ (void*)(intptr_t)Src2.PointerVal); \ break; static GenericValue executeICMP_EQ(GenericValue Src1, GenericValue Src2, const Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_INTEGER_ICMP(eq,Ty); IMPLEMENT_POINTER_ICMP(==); default: cerr << "Unhandled type for ICMP_EQ predicate: " << *Ty << "\n"; abort(); } return Dest; } static GenericValue executeICMP_NE(GenericValue Src1, GenericValue Src2, const Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_INTEGER_ICMP(ne,Ty); IMPLEMENT_POINTER_ICMP(!=); default: cerr << "Unhandled type for ICMP_NE predicate: " << *Ty << "\n"; abort(); } return Dest; } static GenericValue executeICMP_ULT(GenericValue Src1, GenericValue Src2, const Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_INTEGER_ICMP(ult,Ty); IMPLEMENT_POINTER_ICMP(<); default: cerr << "Unhandled type for ICMP_ULT predicate: " << *Ty << "\n"; abort(); } return Dest; } static GenericValue executeICMP_SLT(GenericValue Src1, GenericValue Src2, const Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_INTEGER_ICMP(slt,Ty); IMPLEMENT_POINTER_ICMP(<); default: cerr << "Unhandled type for ICMP_SLT predicate: " << *Ty << "\n"; abort(); } return Dest; } static GenericValue executeICMP_UGT(GenericValue Src1, GenericValue Src2, const Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_INTEGER_ICMP(ugt,Ty); IMPLEMENT_POINTER_ICMP(>); default: cerr << "Unhandled type for ICMP_UGT predicate: " << *Ty << "\n"; abort(); } return Dest; } static GenericValue executeICMP_SGT(GenericValue Src1, GenericValue Src2, const Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_INTEGER_ICMP(sgt,Ty); IMPLEMENT_POINTER_ICMP(>); default: cerr << "Unhandled type for ICMP_SGT predicate: " << *Ty << "\n"; abort(); } return Dest; } static GenericValue executeICMP_ULE(GenericValue Src1, GenericValue Src2, const Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_INTEGER_ICMP(ule,Ty); IMPLEMENT_POINTER_ICMP(<=); default: cerr << "Unhandled type for ICMP_ULE predicate: " << *Ty << "\n"; abort(); } return Dest; } static GenericValue executeICMP_SLE(GenericValue Src1, GenericValue Src2, const Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_INTEGER_ICMP(sle,Ty); IMPLEMENT_POINTER_ICMP(<=); default: cerr << "Unhandled type for ICMP_SLE predicate: " << *Ty << "\n"; abort(); } return Dest; } static GenericValue executeICMP_UGE(GenericValue Src1, GenericValue Src2, const Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_INTEGER_ICMP(uge,Ty); IMPLEMENT_POINTER_ICMP(>=); default: cerr << "Unhandled type for ICMP_UGE predicate: " << *Ty << "\n"; abort(); } return Dest; } static GenericValue executeICMP_SGE(GenericValue Src1, GenericValue Src2, const Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_INTEGER_ICMP(sge,Ty); IMPLEMENT_POINTER_ICMP(>=); default: cerr << "Unhandled type for ICMP_SGE predicate: " << *Ty << "\n"; abort(); } return Dest; } void Interpreter::visitICmpInst(ICmpInst &I) { ExecutionContext &SF = ECStack.back(); const Type *Ty = I.getOperand(0)->getType(); GenericValue Src1 = getOperandValue(I.getOperand(0), SF); GenericValue Src2 = getOperandValue(I.getOperand(1), SF); GenericValue R; // Result switch (I.getPredicate()) { case ICmpInst::ICMP_EQ: R = executeICMP_EQ(Src1, Src2, Ty); break; case ICmpInst::ICMP_NE: R = executeICMP_NE(Src1, Src2, Ty); break; case ICmpInst::ICMP_ULT: R = executeICMP_ULT(Src1, Src2, Ty); break; case ICmpInst::ICMP_SLT: R = executeICMP_SLT(Src1, Src2, Ty); break; case ICmpInst::ICMP_UGT: R = executeICMP_UGT(Src1, Src2, Ty); break; case ICmpInst::ICMP_SGT: R = executeICMP_SGT(Src1, Src2, Ty); break; case ICmpInst::ICMP_ULE: R = executeICMP_ULE(Src1, Src2, Ty); break; case ICmpInst::ICMP_SLE: R = executeICMP_SLE(Src1, Src2, Ty); break; case ICmpInst::ICMP_UGE: R = executeICMP_UGE(Src1, Src2, Ty); break; case ICmpInst::ICMP_SGE: R = executeICMP_SGE(Src1, Src2, Ty); break; default: cerr << "Don't know how to handle this ICmp predicate!\n-->" << I; abort(); } SetValue(&I, R, SF); } #define IMPLEMENT_FCMP(OP, TY) \ case Type::TY##TyID: \ Dest.IntVal = APInt(1,Src1.TY##Val OP Src2.TY##Val); \ break static GenericValue executeFCMP_OEQ(GenericValue Src1, GenericValue Src2, const Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_FCMP(==, Float); IMPLEMENT_FCMP(==, Double); default: cerr << "Unhandled type for FCmp EQ instruction: " << *Ty << "\n"; abort(); } return Dest; } static GenericValue executeFCMP_ONE(GenericValue Src1, GenericValue Src2, const Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_FCMP(!=, Float); IMPLEMENT_FCMP(!=, Double); default: cerr << "Unhandled type for FCmp NE instruction: " << *Ty << "\n"; abort(); } return Dest; } static GenericValue executeFCMP_OLE(GenericValue Src1, GenericValue Src2, const Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_FCMP(<=, Float); IMPLEMENT_FCMP(<=, Double); default: cerr << "Unhandled type for FCmp LE instruction: " << *Ty << "\n"; abort(); } return Dest; } static GenericValue executeFCMP_OGE(GenericValue Src1, GenericValue Src2, const Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_FCMP(>=, Float); IMPLEMENT_FCMP(>=, Double); default: cerr << "Unhandled type for FCmp GE instruction: " << *Ty << "\n"; abort(); } return Dest; } static GenericValue executeFCMP_OLT(GenericValue Src1, GenericValue Src2, const Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_FCMP(<, Float); IMPLEMENT_FCMP(<, Double); default: cerr << "Unhandled type for FCmp LT instruction: " << *Ty << "\n"; abort(); } return Dest; } static GenericValue executeFCMP_OGT(GenericValue Src1, GenericValue Src2, const Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_FCMP(>, Float); IMPLEMENT_FCMP(>, Double); default: cerr << "Unhandled type for FCmp GT instruction: " << *Ty << "\n"; abort(); } return Dest; } #define IMPLEMENT_UNORDERED(TY, X,Y) \ if (TY == Type::FloatTy) \ if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \ Dest.IntVal = APInt(1,true); \ return Dest; \ } \ else if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \ Dest.IntVal = APInt(1,true); \ return Dest; \ } static GenericValue executeFCMP_UEQ(GenericValue Src1, GenericValue Src2, const Type *Ty) { GenericValue Dest; IMPLEMENT_UNORDERED(Ty, Src1, Src2) return executeFCMP_OEQ(Src1, Src2, Ty); } static GenericValue executeFCMP_UNE(GenericValue Src1, GenericValue Src2, const Type *Ty) { GenericValue Dest; IMPLEMENT_UNORDERED(Ty, Src1, Src2) return executeFCMP_ONE(Src1, Src2, Ty); } static GenericValue executeFCMP_ULE(GenericValue Src1, GenericValue Src2, const Type *Ty) { GenericValue Dest; IMPLEMENT_UNORDERED(Ty, Src1, Src2) return executeFCMP_OLE(Src1, Src2, Ty); } static GenericValue executeFCMP_UGE(GenericValue Src1, GenericValue Src2, const Type *Ty) { GenericValue Dest; IMPLEMENT_UNORDERED(Ty, Src1, Src2) return executeFCMP_OGE(Src1, Src2, Ty); } static GenericValue executeFCMP_ULT(GenericValue Src1, GenericValue Src2, const Type *Ty) { GenericValue Dest; IMPLEMENT_UNORDERED(Ty, Src1, Src2) return executeFCMP_OLT(Src1, Src2, Ty); } static GenericValue executeFCMP_UGT(GenericValue Src1, GenericValue Src2, const Type *Ty) { GenericValue Dest; IMPLEMENT_UNORDERED(Ty, Src1, Src2) return executeFCMP_OGT(Src1, Src2, Ty); } static GenericValue executeFCMP_ORD(GenericValue Src1, GenericValue Src2, const Type *Ty) { GenericValue Dest; if (Ty == Type::FloatTy) Dest.IntVal = APInt(1,(Src1.FloatVal == Src1.FloatVal && Src2.FloatVal == Src2.FloatVal)); else Dest.IntVal = APInt(1,(Src1.DoubleVal == Src1.DoubleVal && Src2.DoubleVal == Src2.DoubleVal)); return Dest; } static GenericValue executeFCMP_UNO(GenericValue Src1, GenericValue Src2, const Type *Ty) { GenericValue Dest; if (Ty == Type::FloatTy) Dest.IntVal = APInt(1,(Src1.FloatVal != Src1.FloatVal || Src2.FloatVal != Src2.FloatVal)); else Dest.IntVal = APInt(1,(Src1.DoubleVal != Src1.DoubleVal || Src2.DoubleVal != Src2.DoubleVal)); return Dest; } void Interpreter::visitFCmpInst(FCmpInst &I) { ExecutionContext &SF = ECStack.back(); const Type *Ty = I.getOperand(0)->getType(); GenericValue Src1 = getOperandValue(I.getOperand(0), SF); GenericValue Src2 = getOperandValue(I.getOperand(1), SF); GenericValue R; // Result switch (I.getPredicate()) { case FCmpInst::FCMP_FALSE: R.IntVal = APInt(1,false); break; case FCmpInst::FCMP_TRUE: R.IntVal = APInt(1,true); break; case FCmpInst::FCMP_ORD: R = executeFCMP_ORD(Src1, Src2, Ty); break; case FCmpInst::FCMP_UNO: R = executeFCMP_UNO(Src1, Src2, Ty); break; case FCmpInst::FCMP_UEQ: R = executeFCMP_UEQ(Src1, Src2, Ty); break; case FCmpInst::FCMP_OEQ: R = executeFCMP_OEQ(Src1, Src2, Ty); break; case FCmpInst::FCMP_UNE: R = executeFCMP_UNE(Src1, Src2, Ty); break; case FCmpInst::FCMP_ONE: R = executeFCMP_ONE(Src1, Src2, Ty); break; case FCmpInst::FCMP_ULT: R = executeFCMP_ULT(Src1, Src2, Ty); break; case FCmpInst::FCMP_OLT: R = executeFCMP_OLT(Src1, Src2, Ty); break; case FCmpInst::FCMP_UGT: R = executeFCMP_UGT(Src1, Src2, Ty); break; case FCmpInst::FCMP_OGT: R = executeFCMP_OGT(Src1, Src2, Ty); break; case FCmpInst::FCMP_ULE: R = executeFCMP_ULE(Src1, Src2, Ty); break; case FCmpInst::FCMP_OLE: R = executeFCMP_OLE(Src1, Src2, Ty); break; case FCmpInst::FCMP_UGE: R = executeFCMP_UGE(Src1, Src2, Ty); break; case FCmpInst::FCMP_OGE: R = executeFCMP_OGE(Src1, Src2, Ty); break; default: cerr << "Don't know how to handle this FCmp predicate!\n-->" << I; abort(); } SetValue(&I, R, SF); } static GenericValue executeCmpInst(unsigned predicate, GenericValue Src1, GenericValue Src2, const Type *Ty) { GenericValue Result; switch (predicate) { case ICmpInst::ICMP_EQ: return executeICMP_EQ(Src1, Src2, Ty); case ICmpInst::ICMP_NE: return executeICMP_NE(Src1, Src2, Ty); case ICmpInst::ICMP_UGT: return executeICMP_UGT(Src1, Src2, Ty); case ICmpInst::ICMP_SGT: return executeICMP_SGT(Src1, Src2, Ty); case ICmpInst::ICMP_ULT: return executeICMP_ULT(Src1, Src2, Ty); case ICmpInst::ICMP_SLT: return executeICMP_SLT(Src1, Src2, Ty); case ICmpInst::ICMP_UGE: return executeICMP_UGE(Src1, Src2, Ty); case ICmpInst::ICMP_SGE: return executeICMP_SGE(Src1, Src2, Ty); case ICmpInst::ICMP_ULE: return executeICMP_ULE(Src1, Src2, Ty); case ICmpInst::ICMP_SLE: return executeICMP_SLE(Src1, Src2, Ty); case FCmpInst::FCMP_ORD: return executeFCMP_ORD(Src1, Src2, Ty); case FCmpInst::FCMP_UNO: return executeFCMP_UNO(Src1, Src2, Ty); case FCmpInst::FCMP_OEQ: return executeFCMP_OEQ(Src1, Src2, Ty); case FCmpInst::FCMP_UEQ: return executeFCMP_UEQ(Src1, Src2, Ty); case FCmpInst::FCMP_ONE: return executeFCMP_ONE(Src1, Src2, Ty); case FCmpInst::FCMP_UNE: return executeFCMP_UNE(Src1, Src2, Ty); case FCmpInst::FCMP_OLT: return executeFCMP_OLT(Src1, Src2, Ty); case FCmpInst::FCMP_ULT: return executeFCMP_ULT(Src1, Src2, Ty); case FCmpInst::FCMP_OGT: return executeFCMP_OGT(Src1, Src2, Ty); case FCmpInst::FCMP_UGT: return executeFCMP_UGT(Src1, Src2, Ty); case FCmpInst::FCMP_OLE: return executeFCMP_OLE(Src1, Src2, Ty); case FCmpInst::FCMP_ULE: return executeFCMP_ULE(Src1, Src2, Ty); case FCmpInst::FCMP_OGE: return executeFCMP_OGE(Src1, Src2, Ty); case FCmpInst::FCMP_UGE: return executeFCMP_UGE(Src1, Src2, Ty); case FCmpInst::FCMP_FALSE: { GenericValue Result; Result.IntVal = APInt(1, false); return Result; } case FCmpInst::FCMP_TRUE: { GenericValue Result; Result.IntVal = APInt(1, true); return Result; } default: cerr << "Unhandled Cmp predicate\n"; abort(); } } void Interpreter::visitBinaryOperator(BinaryOperator &I) { ExecutionContext &SF = ECStack.back(); const Type *Ty = I.getOperand(0)->getType(); GenericValue Src1 = getOperandValue(I.getOperand(0), SF); GenericValue Src2 = getOperandValue(I.getOperand(1), SF); GenericValue R; // Result switch (I.getOpcode()) { case Instruction::Add: executeAddInst (R, Src1, Src2, Ty); break; case Instruction::Sub: executeSubInst (R, Src1, Src2, Ty); break; case Instruction::Mul: executeMulInst (R, Src1, Src2, Ty); break; case Instruction::FDiv: executeFDivInst (R, Src1, Src2, Ty); break; case Instruction::FRem: executeFRemInst (R, Src1, Src2, Ty); break; case Instruction::UDiv: R.IntVal = Src1.IntVal.udiv(Src2.IntVal); break; case Instruction::SDiv: R.IntVal = Src1.IntVal.sdiv(Src2.IntVal); break; case Instruction::URem: R.IntVal = Src1.IntVal.urem(Src2.IntVal); break; case Instruction::SRem: R.IntVal = Src1.IntVal.srem(Src2.IntVal); break; case Instruction::And: R.IntVal = Src1.IntVal & Src2.IntVal; break; case Instruction::Or: R.IntVal = Src1.IntVal | Src2.IntVal; break; case Instruction::Xor: R.IntVal = Src1.IntVal ^ Src2.IntVal; break; default: cerr << "Don't know how to handle this binary operator!\n-->" << I; abort(); } SetValue(&I, R, SF); } static GenericValue executeSelectInst(GenericValue Src1, GenericValue Src2, GenericValue Src3) { return Src1.IntVal == 0 ? Src3 : Src2; } void Interpreter::visitSelectInst(SelectInst &I) { ExecutionContext &SF = ECStack.back(); GenericValue Src1 = getOperandValue(I.getOperand(0), SF); GenericValue Src2 = getOperandValue(I.getOperand(1), SF); GenericValue Src3 = getOperandValue(I.getOperand(2), SF); GenericValue R = executeSelectInst(Src1, Src2, Src3); SetValue(&I, R, SF); } //===----------------------------------------------------------------------===// // Terminator Instruction Implementations //===----------------------------------------------------------------------===// void Interpreter::exitCalled(GenericValue GV) { // runAtExitHandlers() assumes there are no stack frames, but // if exit() was called, then it had a stack frame. Blow away // the stack before interpreting atexit handlers. ECStack.clear (); runAtExitHandlers (); exit (GV.IntVal.zextOrTrunc(32).getZExtValue()); } /// Pop the last stack frame off of ECStack and then copy the result /// back into the result variable if we are not returning void. The /// result variable may be the ExitValue, or the Value of the calling /// CallInst if there was a previous stack frame. This method may /// invalidate any ECStack iterators you have. This method also takes /// care of switching to the normal destination BB, if we are returning /// from an invoke. /// void Interpreter::popStackAndReturnValueToCaller (const Type *RetTy, GenericValue Result) { // Pop the current stack frame. ECStack.pop_back(); if (ECStack.empty()) { // Finished main. Put result into exit code... if (RetTy && RetTy->isInteger()) { // Nonvoid return type? ExitValue = Result; // Capture the exit value of the program } else { memset(&ExitValue, 0, sizeof(ExitValue)); } } else { // If we have a previous stack frame, and we have a previous call, // fill in the return value... ExecutionContext &CallingSF = ECStack.back(); if (Instruction *I = CallingSF.Caller.getInstruction()) { if (CallingSF.Caller.getType() != Type::VoidTy) // Save result... SetValue(I, Result, CallingSF); if (InvokeInst *II = dyn_cast (I)) SwitchToNewBasicBlock (II->getNormalDest (), CallingSF); CallingSF.Caller = CallSite(); // We returned from the call... } } } void Interpreter::visitReturnInst(ReturnInst &I) { ExecutionContext &SF = ECStack.back(); const Type *RetTy = Type::VoidTy; GenericValue Result; // Save away the return value... (if we are not 'ret void') if (I.getNumOperands()) { RetTy = I.getReturnValue()->getType(); Result = getOperandValue(I.getReturnValue(), SF); } popStackAndReturnValueToCaller(RetTy, Result); } void Interpreter::visitUnwindInst(UnwindInst &I) { // Unwind stack Instruction *Inst; do { ECStack.pop_back (); if (ECStack.empty ()) abort (); Inst = ECStack.back ().Caller.getInstruction (); } while (!(Inst && isa (Inst))); // Return from invoke ExecutionContext &InvokingSF = ECStack.back (); InvokingSF.Caller = CallSite (); // Go to exceptional destination BB of invoke instruction SwitchToNewBasicBlock(cast(Inst)->getUnwindDest(), InvokingSF); } void Interpreter::visitUnreachableInst(UnreachableInst &I) { cerr << "ERROR: Program executed an 'unreachable' instruction!\n"; abort(); } void Interpreter::visitBranchInst(BranchInst &I) { ExecutionContext &SF = ECStack.back(); BasicBlock *Dest; Dest = I.getSuccessor(0); // Uncond branches have a fixed dest... if (!I.isUnconditional()) { Value *Cond = I.getCondition(); if (getOperandValue(Cond, SF).IntVal == 0) // If false cond... Dest = I.getSuccessor(1); } SwitchToNewBasicBlock(Dest, SF); } void Interpreter::visitSwitchInst(SwitchInst &I) { ExecutionContext &SF = ECStack.back(); GenericValue CondVal = getOperandValue(I.getOperand(0), SF); const Type *ElTy = I.getOperand(0)->getType(); // Check to see if any of the cases match... BasicBlock *Dest = 0; for (unsigned i = 2, e = I.getNumOperands(); i != e; i += 2) if (executeICMP_EQ(CondVal, getOperandValue(I.getOperand(i), SF), ElTy) .IntVal != 0) { Dest = cast(I.getOperand(i+1)); break; } if (!Dest) Dest = I.getDefaultDest(); // No cases matched: use default SwitchToNewBasicBlock(Dest, SF); } // SwitchToNewBasicBlock - This method is used to jump to a new basic block. // This function handles the actual updating of block and instruction iterators // as well as execution of all of the PHI nodes in the destination block. // // This method does this because all of the PHI nodes must be executed // atomically, reading their inputs before any of the results are updated. Not // doing this can cause problems if the PHI nodes depend on other PHI nodes for // their inputs. If the input PHI node is updated before it is read, incorrect // results can happen. Thus we use a two phase approach. // void Interpreter::SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF){ BasicBlock *PrevBB = SF.CurBB; // Remember where we came from... SF.CurBB = Dest; // Update CurBB to branch destination SF.CurInst = SF.CurBB->begin(); // Update new instruction ptr... if (!isa(SF.CurInst)) return; // Nothing fancy to do // Loop over all of the PHI nodes in the current block, reading their inputs. std::vector ResultValues; for (; PHINode *PN = dyn_cast(SF.CurInst); ++SF.CurInst) { // Search for the value corresponding to this previous bb... int i = PN->getBasicBlockIndex(PrevBB); assert(i != -1 && "PHINode doesn't contain entry for predecessor??"); Value *IncomingValue = PN->getIncomingValue(i); // Save the incoming value for this PHI node... ResultValues.push_back(getOperandValue(IncomingValue, SF)); } // Now loop over all of the PHI nodes setting their values... SF.CurInst = SF.CurBB->begin(); for (unsigned i = 0; isa(SF.CurInst); ++SF.CurInst, ++i) { PHINode *PN = cast(SF.CurInst); SetValue(PN, ResultValues[i], SF); } } //===----------------------------------------------------------------------===// // Memory Instruction Implementations //===----------------------------------------------------------------------===// void Interpreter::visitAllocationInst(AllocationInst &I) { ExecutionContext &SF = ECStack.back(); const Type *Ty = I.getType()->getElementType(); // Type to be allocated // Get the number of elements being allocated by the array... unsigned NumElements = getOperandValue(I.getOperand(0), SF).IntVal.getZExtValue(); unsigned TypeSize = (size_t)TD.getTypeSize(Ty); unsigned MemToAlloc = NumElements * TypeSize; // Allocate enough memory to hold the type... void *Memory = malloc(MemToAlloc); DOUT << "Allocated Type: " << *Ty << " (" << TypeSize << " bytes) x " << NumElements << " (Total: " << MemToAlloc << ") at " << unsigned(Memory) << '\n'; GenericValue Result = PTOGV(Memory); assert(Result.PointerVal != 0 && "Null pointer returned by malloc!"); SetValue(&I, Result, SF); if (I.getOpcode() == Instruction::Alloca) ECStack.back().Allocas.add(Memory); } void Interpreter::visitFreeInst(FreeInst &I) { ExecutionContext &SF = ECStack.back(); assert(isa(I.getOperand(0)->getType()) && "Freeing nonptr?"); GenericValue Value = getOperandValue(I.getOperand(0), SF); // TODO: Check to make sure memory is allocated free(GVTOP(Value)); // Free memory } // getElementOffset - The workhorse for getelementptr. // GenericValue Interpreter::executeGEPOperation(Value *Ptr, gep_type_iterator I, gep_type_iterator E, ExecutionContext &SF) { assert(isa(Ptr->getType()) && "Cannot getElementOffset of a nonpointer type!"); uint64_t Total = 0; for (; I != E; ++I) { if (const StructType *STy = dyn_cast(*I)) { const StructLayout *SLO = TD.getStructLayout(STy); const ConstantInt *CPU = cast(I.getOperand()); unsigned Index = unsigned(CPU->getZExtValue()); Total += SLO->getElementOffset(Index); } else { const SequentialType *ST = cast(*I); // Get the index number for the array... which must be long type... GenericValue IdxGV = getOperandValue(I.getOperand(), SF); int64_t Idx; unsigned BitWidth = cast(I.getOperand()->getType())->getBitWidth(); if (BitWidth == 32) Idx = (int64_t)(int32_t)IdxGV.IntVal.getZExtValue(); else if (BitWidth == 64) Idx = (int64_t)IdxGV.IntVal.getZExtValue(); else assert(0 && "Invalid index type for getelementptr"); Total += TD.getTypeSize(ST->getElementType())*Idx; } } GenericValue Result; Result.PointerVal = ((char*)getOperandValue(Ptr, SF).PointerVal) + Total; DOUT << "GEP Index " << Total << " bytes.\n"; return Result; } void Interpreter::visitGetElementPtrInst(GetElementPtrInst &I) { ExecutionContext &SF = ECStack.back(); SetValue(&I, TheEE->executeGEPOperation(I.getPointerOperand(), gep_type_begin(I), gep_type_end(I), SF), SF); } void Interpreter::visitLoadInst(LoadInst &I) { ExecutionContext &SF = ECStack.back(); GenericValue SRC = getOperandValue(I.getPointerOperand(), SF); GenericValue *Ptr = (GenericValue*)GVTOP(SRC); GenericValue Result; LoadValueFromMemory(Result, Ptr, I.getType()); SetValue(&I, Result, SF); } void Interpreter::visitStoreInst(StoreInst &I) { ExecutionContext &SF = ECStack.back(); GenericValue Val = getOperandValue(I.getOperand(0), SF); GenericValue SRC = getOperandValue(I.getPointerOperand(), SF); StoreValueToMemory(Val, (GenericValue *)GVTOP(SRC), I.getOperand(0)->getType()); } //===----------------------------------------------------------------------===// // Miscellaneous Instruction Implementations //===----------------------------------------------------------------------===// void Interpreter::visitCallSite(CallSite CS) { ExecutionContext &SF = ECStack.back(); // Check to see if this is an intrinsic function call... if (Function *F = CS.getCalledFunction()) if (F->isDeclaration ()) switch (F->getIntrinsicID()) { case Intrinsic::not_intrinsic: break; case Intrinsic::vastart: { // va_start GenericValue ArgIndex; ArgIndex.UIntPairVal.first = ECStack.size() - 1; ArgIndex.UIntPairVal.second = 0; SetValue(CS.getInstruction(), ArgIndex, SF); return; } case Intrinsic::vaend: // va_end is a noop for the interpreter return; case Intrinsic::vacopy: // va_copy: dest = src SetValue(CS.getInstruction(), getOperandValue(*CS.arg_begin(), SF), SF); return; default: // If it is an unknown intrinsic function, use the intrinsic lowering // class to transform it into hopefully tasty LLVM code. // Instruction *Prev = CS.getInstruction()->getPrev(); BasicBlock *Parent = CS.getInstruction()->getParent(); IL->LowerIntrinsicCall(cast(CS.getInstruction())); // Restore the CurInst pointer to the first instruction newly inserted, if // any. if (!Prev) { SF.CurInst = Parent->begin(); } else { SF.CurInst = Prev; ++SF.CurInst; } return; } SF.Caller = CS; std::vector ArgVals; const unsigned NumArgs = SF.Caller.arg_size(); ArgVals.reserve(NumArgs); for (CallSite::arg_iterator i = SF.Caller.arg_begin(), e = SF.Caller.arg_end(); i != e; ++i) { Value *V = *i; ArgVals.push_back(getOperandValue(V, SF)); // Promote all integral types whose size is < sizeof(int) into ints. We do // this by zero or sign extending the value as appropriate according to the // source type. const Type *Ty = V->getType(); if (Ty->isInteger()) if (ArgVals.back().IntVal.getBitWidth() < 32) ArgVals.back().IntVal = ArgVals.back().IntVal.sext(32); } // To handle indirect calls, we must get the pointer value from the argument // and treat it as a function pointer. GenericValue SRC = getOperandValue(SF.Caller.getCalledValue(), SF); callFunction((Function*)GVTOP(SRC), ArgVals); } void Interpreter::visitShl(BinaryOperator &I) { ExecutionContext &SF = ECStack.back(); GenericValue Src1 = getOperandValue(I.getOperand(0), SF); GenericValue Src2 = getOperandValue(I.getOperand(1), SF); GenericValue Dest; Dest.IntVal = Src1.IntVal.shl(Src2.IntVal.getZExtValue()); SetValue(&I, Dest, SF); } void Interpreter::visitLShr(BinaryOperator &I) { ExecutionContext &SF = ECStack.back(); GenericValue Src1 = getOperandValue(I.getOperand(0), SF); GenericValue Src2 = getOperandValue(I.getOperand(1), SF); GenericValue Dest; Dest.IntVal = Src1.IntVal.lshr(Src2.IntVal.getZExtValue()); SetValue(&I, Dest, SF); } void Interpreter::visitAShr(BinaryOperator &I) { ExecutionContext &SF = ECStack.back(); GenericValue Src1 = getOperandValue(I.getOperand(0), SF); GenericValue Src2 = getOperandValue(I.getOperand(1), SF); GenericValue Dest; Dest.IntVal = Src1.IntVal.ashr(Src2.IntVal.getZExtValue()); SetValue(&I, Dest, SF); } GenericValue Interpreter::executeTruncInst(Value *SrcVal, const Type *DstTy, ExecutionContext &SF) { const Type *SrcTy = SrcVal->getType(); GenericValue Dest, Src = getOperandValue(SrcVal, SF); const IntegerType *DITy = cast(DstTy); const IntegerType *SITy = cast(SrcTy); unsigned DBitWidth = DITy->getBitWidth(); unsigned SBitWidth = SITy->getBitWidth(); assert(SBitWidth > DBitWidth && "Invalid truncate"); Dest.IntVal = Src.IntVal.trunc(DBitWidth); return Dest; } GenericValue Interpreter::executeSExtInst(Value *SrcVal, const Type *DstTy, ExecutionContext &SF) { const Type *SrcTy = SrcVal->getType(); GenericValue Dest, Src = getOperandValue(SrcVal, SF); const IntegerType *DITy = cast(DstTy); const IntegerType *SITy = cast(SrcTy); unsigned DBitWidth = DITy->getBitWidth(); unsigned SBitWidth = SITy->getBitWidth(); assert(SBitWidth < DBitWidth && "Invalid sign extend"); Dest.IntVal = Src.IntVal.sext(DBitWidth); return Dest; } GenericValue Interpreter::executeZExtInst(Value *SrcVal, const Type *DstTy, ExecutionContext &SF) { const Type *SrcTy = SrcVal->getType(); GenericValue Dest, Src = getOperandValue(SrcVal, SF); const IntegerType *DITy = cast(DstTy); const IntegerType *SITy = cast(SrcTy); unsigned DBitWidth = DITy->getBitWidth(); unsigned SBitWidth = SITy->getBitWidth(); assert(SBitWidth < DBitWidth && "Invalid sign extend"); Dest.IntVal = Src.IntVal.zext(DBitWidth); return Dest; } GenericValue Interpreter::executeFPTruncInst(Value *SrcVal, const Type *DstTy, ExecutionContext &SF) { const Type *SrcTy = SrcVal->getType(); GenericValue Dest, Src = getOperandValue(SrcVal, SF); assert(SrcTy == Type::DoubleTy && DstTy == Type::FloatTy && "Invalid FPTrunc instruction"); Dest.FloatVal = (float) Src.DoubleVal; return Dest; } GenericValue Interpreter::executeFPExtInst(Value *SrcVal, const Type *DstTy, ExecutionContext &SF) { const Type *SrcTy = SrcVal->getType(); GenericValue Dest, Src = getOperandValue(SrcVal, SF); assert(SrcTy == Type::FloatTy && DstTy == Type::DoubleTy && "Invalid FPTrunc instruction"); Dest.DoubleVal = (double) Src.FloatVal; return Dest; } GenericValue Interpreter::executeFPToUIInst(Value *SrcVal, const Type *DstTy, ExecutionContext &SF) { const Type *SrcTy = SrcVal->getType(); uint32_t DBitWidth = cast(DstTy)->getBitWidth(); GenericValue Dest, Src = getOperandValue(SrcVal, SF); assert(SrcTy->isFloatingPoint() && "Invalid FPToUI instruction"); if (SrcTy->getTypeID() == Type::FloatTyID) Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth); else Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth); return Dest; } GenericValue Interpreter::executeFPToSIInst(Value *SrcVal, const Type *DstTy, ExecutionContext &SF) { const Type *SrcTy = SrcVal->getType(); uint32_t DBitWidth = cast(DstTy)->getBitWidth(); GenericValue Dest, Src = getOperandValue(SrcVal, SF); assert(SrcTy->isFloatingPoint() && "Invalid FPToSI instruction"); if (SrcTy->getTypeID() == Type::FloatTyID) Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth); else Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth); return Dest; } GenericValue Interpreter::executeUIToFPInst(Value *SrcVal, const Type *DstTy, ExecutionContext &SF) { GenericValue Dest, Src = getOperandValue(SrcVal, SF); assert(DstTy->isFloatingPoint() && "Invalid UIToFP instruction"); if (DstTy->getTypeID() == Type::FloatTyID) Dest.FloatVal = APIntOps::RoundAPIntToFloat(Src.IntVal); else Dest.DoubleVal = APIntOps::RoundAPIntToDouble(Src.IntVal); return Dest; } GenericValue Interpreter::executeSIToFPInst(Value *SrcVal, const Type *DstTy, ExecutionContext &SF) { GenericValue Dest, Src = getOperandValue(SrcVal, SF); assert(DstTy->isFloatingPoint() && "Invalid SIToFP instruction"); if (DstTy->getTypeID() == Type::FloatTyID) Dest.FloatVal = APIntOps::RoundSignedAPIntToFloat(Src.IntVal); else Dest.DoubleVal = APIntOps::RoundSignedAPIntToDouble(Src.IntVal); return Dest; } GenericValue Interpreter::executePtrToIntInst(Value *SrcVal, const Type *DstTy, ExecutionContext &SF) { const Type *SrcTy = SrcVal->getType(); uint32_t DBitWidth = cast(DstTy)->getBitWidth(); GenericValue Dest, Src = getOperandValue(SrcVal, SF); assert(isa(SrcTy) && "Invalid PtrToInt instruction"); Dest.IntVal = APInt(DBitWidth, (intptr_t) Src.PointerVal); return Dest; } GenericValue Interpreter::executeIntToPtrInst(Value *SrcVal, const Type *DstTy, ExecutionContext &SF) { GenericValue Dest, Src = getOperandValue(SrcVal, SF); assert(isa(DstTy) && "Invalid PtrToInt instruction"); uint32_t PtrSize = TD.getPointerSizeInBits(); if (PtrSize != Src.IntVal.getBitWidth()) Src.IntVal = Src.IntVal.zextOrTrunc(PtrSize); Dest.PointerVal = (PointerTy) Src.IntVal.getZExtValue(); return Dest; } GenericValue Interpreter::executeBitCastInst(Value *SrcVal, const Type *DstTy, ExecutionContext &SF) { const Type *SrcTy = SrcVal->getType(); GenericValue Dest, Src = getOperandValue(SrcVal, SF); if (isa(DstTy)) { assert(isa(SrcTy) && "Invalid BitCast"); Dest.PointerVal = Src.PointerVal; } else if (DstTy->isInteger()) { if (SrcTy == Type::FloatTy) { Dest.IntVal.floatToBits(Src.FloatVal); } else if (SrcTy == Type::DoubleTy) { Dest.IntVal.doubleToBits(Src.DoubleVal); } else if (SrcTy->isInteger()) { Dest.IntVal = Src.IntVal; } else assert(0 && "Invalid BitCast"); } else if (DstTy == Type::FloatTy) { if (SrcTy->isInteger()) Dest.FloatVal = Src.IntVal.bitsToFloat(); else Dest.FloatVal = Src.FloatVal; } else if (DstTy == Type::DoubleTy) { if (SrcTy->isInteger()) Dest.DoubleVal = Src.IntVal.bitsToDouble(); else Dest.DoubleVal = Src.DoubleVal; } else assert(0 && "Invalid Bitcast"); return Dest; } void Interpreter::visitTruncInst(TruncInst &I) { ExecutionContext &SF = ECStack.back(); SetValue(&I, executeTruncInst(I.getOperand(0), I.getType(), SF), SF); } void Interpreter::visitSExtInst(SExtInst &I) { ExecutionContext &SF = ECStack.back(); SetValue(&I, executeSExtInst(I.getOperand(0), I.getType(), SF), SF); } void Interpreter::visitZExtInst(ZExtInst &I) { ExecutionContext &SF = ECStack.back(); SetValue(&I, executeZExtInst(I.getOperand(0), I.getType(), SF), SF); } void Interpreter::visitFPTruncInst(FPTruncInst &I) { ExecutionContext &SF = ECStack.back(); SetValue(&I, executeFPTruncInst(I.getOperand(0), I.getType(), SF), SF); } void Interpreter::visitFPExtInst(FPExtInst &I) { ExecutionContext &SF = ECStack.back(); SetValue(&I, executeFPExtInst(I.getOperand(0), I.getType(), SF), SF); } void Interpreter::visitUIToFPInst(UIToFPInst &I) { ExecutionContext &SF = ECStack.back(); SetValue(&I, executeUIToFPInst(I.getOperand(0), I.getType(), SF), SF); } void Interpreter::visitSIToFPInst(SIToFPInst &I) { ExecutionContext &SF = ECStack.back(); SetValue(&I, executeSIToFPInst(I.getOperand(0), I.getType(), SF), SF); } void Interpreter::visitFPToUIInst(FPToUIInst &I) { ExecutionContext &SF = ECStack.back(); SetValue(&I, executeFPToUIInst(I.getOperand(0), I.getType(), SF), SF); } void Interpreter::visitFPToSIInst(FPToSIInst &I) { ExecutionContext &SF = ECStack.back(); SetValue(&I, executeFPToSIInst(I.getOperand(0), I.getType(), SF), SF); } void Interpreter::visitPtrToIntInst(PtrToIntInst &I) { ExecutionContext &SF = ECStack.back(); SetValue(&I, executePtrToIntInst(I.getOperand(0), I.getType(), SF), SF); } void Interpreter::visitIntToPtrInst(IntToPtrInst &I) { ExecutionContext &SF = ECStack.back(); SetValue(&I, executeIntToPtrInst(I.getOperand(0), I.getType(), SF), SF); } void Interpreter::visitBitCastInst(BitCastInst &I) { ExecutionContext &SF = ECStack.back(); SetValue(&I, executeBitCastInst(I.getOperand(0), I.getType(), SF), SF); } #define IMPLEMENT_VAARG(TY) \ case Type::TY##TyID: Dest.TY##Val = Src.TY##Val; break void Interpreter::visitVAArgInst(VAArgInst &I) { ExecutionContext &SF = ECStack.back(); // Get the incoming valist parameter. LLI treats the valist as a // (ec-stack-depth var-arg-index) pair. GenericValue VAList = getOperandValue(I.getOperand(0), SF); GenericValue Dest; GenericValue Src = ECStack[VAList.UIntPairVal.first] .VarArgs[VAList.UIntPairVal.second]; const Type *Ty = I.getType(); switch (Ty->getTypeID()) { case Type::IntegerTyID: Dest.IntVal = Src.IntVal; IMPLEMENT_VAARG(Pointer); IMPLEMENT_VAARG(Float); IMPLEMENT_VAARG(Double); default: cerr << "Unhandled dest type for vaarg instruction: " << *Ty << "\n"; abort(); } // Set the Value of this Instruction. SetValue(&I, Dest, SF); // Move the pointer to the next vararg. ++VAList.UIntPairVal.second; } GenericValue Interpreter::getConstantExprValue (ConstantExpr *CE, ExecutionContext &SF) { switch (CE->getOpcode()) { case Instruction::Trunc: return executeTruncInst(CE->getOperand(0), CE->getType(), SF); case Instruction::ZExt: return executeZExtInst(CE->getOperand(0), CE->getType(), SF); case Instruction::SExt: return executeSExtInst(CE->getOperand(0), CE->getType(), SF); case Instruction::FPTrunc: return executeFPTruncInst(CE->getOperand(0), CE->getType(), SF); case Instruction::FPExt: return executeFPExtInst(CE->getOperand(0), CE->getType(), SF); case Instruction::UIToFP: return executeUIToFPInst(CE->getOperand(0), CE->getType(), SF); case Instruction::SIToFP: return executeSIToFPInst(CE->getOperand(0), CE->getType(), SF); case Instruction::FPToUI: return executeFPToUIInst(CE->getOperand(0), CE->getType(), SF); case Instruction::FPToSI: return executeFPToSIInst(CE->getOperand(0), CE->getType(), SF); case Instruction::PtrToInt: return executePtrToIntInst(CE->getOperand(0), CE->getType(), SF); case Instruction::IntToPtr: return executeIntToPtrInst(CE->getOperand(0), CE->getType(), SF); case Instruction::BitCast: return executeBitCastInst(CE->getOperand(0), CE->getType(), SF); case Instruction::GetElementPtr: return executeGEPOperation(CE->getOperand(0), gep_type_begin(CE), gep_type_end(CE), SF); case Instruction::FCmp: case Instruction::ICmp: return executeCmpInst(CE->getPredicate(), getOperandValue(CE->getOperand(0), SF), getOperandValue(CE->getOperand(1), SF), CE->getOperand(0)->getType()); case Instruction::Select: return executeSelectInst(getOperandValue(CE->getOperand(0), SF), getOperandValue(CE->getOperand(1), SF), getOperandValue(CE->getOperand(2), SF)); default : break; } // The cases below here require a GenericValue parameter for the result // so we initialize one, compute it and then return it. GenericValue Op0 = getOperandValue(CE->getOperand(0), SF); GenericValue Op1 = getOperandValue(CE->getOperand(1), SF); GenericValue Dest; const Type * Ty = CE->getOperand(0)->getType(); switch (CE->getOpcode()) { case Instruction::Add: executeAddInst (Dest, Op0, Op1, Ty); break; case Instruction::Sub: executeSubInst (Dest, Op0, Op1, Ty); break; case Instruction::Mul: executeMulInst (Dest, Op0, Op1, Ty); break; case Instruction::FDiv: executeFDivInst(Dest, Op0, Op1, Ty); break; case Instruction::FRem: executeFRemInst(Dest, Op0, Op1, Ty); break; case Instruction::SDiv: Dest.IntVal = Op0.IntVal.sdiv(Op1.IntVal); break; case Instruction::UDiv: Dest.IntVal = Op0.IntVal.udiv(Op1.IntVal); break; case Instruction::URem: Dest.IntVal = Op0.IntVal.urem(Op1.IntVal); break; case Instruction::SRem: Dest.IntVal = Op0.IntVal.srem(Op1.IntVal); break; case Instruction::And: Dest.IntVal = Op0.IntVal.And(Op1.IntVal); break; case Instruction::Or: Dest.IntVal = Op0.IntVal.Or(Op1.IntVal); break; case Instruction::Xor: Dest.IntVal = Op0.IntVal.Xor(Op1.IntVal); break; case Instruction::Shl: Dest.IntVal = Op0.IntVal.shl(Op1.IntVal.getZExtValue()); break; case Instruction::LShr: Dest.IntVal = Op0.IntVal.lshr(Op1.IntVal.getZExtValue()); break; case Instruction::AShr: Dest.IntVal = Op0.IntVal.ashr(Op1.IntVal.getZExtValue()); break; default: cerr << "Unhandled ConstantExpr: " << *CE << "\n"; abort(); return GenericValue(); } return Dest; } GenericValue Interpreter::getOperandValue(Value *V, ExecutionContext &SF) { if (ConstantExpr *CE = dyn_cast(V)) { return getConstantExprValue(CE, SF); } else if (Constant *CPV = dyn_cast(V)) { return getConstantValue(CPV); } else if (GlobalValue *GV = dyn_cast(V)) { return PTOGV(getPointerToGlobal(GV)); } else { return SF.Values[V]; } } //===----------------------------------------------------------------------===// // Dispatch and Execution Code //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // callFunction - Execute the specified function... // void Interpreter::callFunction(Function *F, const std::vector &ArgVals) { assert((ECStack.empty() || ECStack.back().Caller.getInstruction() == 0 || ECStack.back().Caller.arg_size() == ArgVals.size()) && "Incorrect number of arguments passed into function call!"); // Make a new stack frame... and fill it in. ECStack.push_back(ExecutionContext()); ExecutionContext &StackFrame = ECStack.back(); StackFrame.CurFunction = F; // Special handling for external functions. if (F->isDeclaration()) { GenericValue Result = callExternalFunction (F, ArgVals); // Simulate a 'ret' instruction of the appropriate type. popStackAndReturnValueToCaller (F->getReturnType (), Result); return; } // Get pointers to first LLVM BB & Instruction in function. StackFrame.CurBB = F->begin(); StackFrame.CurInst = StackFrame.CurBB->begin(); // Run through the function arguments and initialize their values... assert((ArgVals.size() == F->arg_size() || (ArgVals.size() > F->arg_size() && F->getFunctionType()->isVarArg()))&& "Invalid number of values passed to function invocation!"); // Handle non-varargs arguments... unsigned i = 0; for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E; ++AI, ++i) SetValue(AI, ArgVals[i], StackFrame); // Handle varargs arguments... StackFrame.VarArgs.assign(ArgVals.begin()+i, ArgVals.end()); } void Interpreter::run() { while (!ECStack.empty()) { // Interpret a single instruction & increment the "PC". ExecutionContext &SF = ECStack.back(); // Current stack frame Instruction &I = *SF.CurInst++; // Increment before execute // Track the number of dynamic instructions executed. ++NumDynamicInsts; DOUT << "About to interpret: " << I; visit(I); // Dispatch to one of the visit* methods... } }