//===------------------- SSI.cpp - Creates SSI Representation -------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass converts a list of variables to the Static Single Information // form. This is a program representation described by Scott Ananian in his // Master Thesis: "The Static Single Information Form (1999)". // We are building an on-demand representation, that is, we do not convert // every single variable in the target function to SSI form. Rather, we receive // a list of target variables that must be converted. We also do not // completely convert a target variable to the SSI format. Instead, we only // change the variable in the points where new information can be attached // to its live range, that is, at branch points. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "ssi" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/SSI.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/Dominators.h" using namespace llvm; static const std::string SSI_PHI = "SSI_phi"; static const std::string SSI_SIG = "SSI_sigma"; static const unsigned UNSIGNED_INFINITE = ~0U; STATISTIC(NumSigmaInserted, "Number of sigma functions inserted"); STATISTIC(NumPhiInserted, "Number of phi functions inserted"); void SSI::getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); AU.addRequired(); AU.setPreservesCFG(); } bool SSI::runOnFunction(Function &F) { DT_ = &getAnalysis(); return false; } /// This methods creates the SSI representation for the list of values /// received. It will only create SSI representation if a value is used /// in a to decide a branch. Repeated values are created only once. /// void SSI::createSSI(SmallVectorImpl &value) { init(value); for (unsigned i = 0; i < num_values; ++i) { if (created.insert(value[i])) { needConstruction[i] = true; } } insertSigmaFunctions(value); // Test if there is a need to transform to SSI if (needConstruction.any()) { insertPhiFunctions(value); renameInit(value); rename(DT_->getRoot()); fixPhis(); } clean(); } /// Insert sigma functions (a sigma function is a phi function with one /// operator) /// void SSI::insertSigmaFunctions(SmallVectorImpl &value) { for (unsigned i = 0; i < num_values; ++i) { if (!needConstruction[i]) continue; for (Value::use_iterator begin = value[i]->use_begin(), end = value[i]->use_end(); begin != end; ++begin) { // Test if the Use of the Value is in a comparator if (CmpInst *CI = dyn_cast(begin)) { // Iterates through all uses of CmpInst for (Value::use_iterator begin_ci = CI->use_begin(), end_ci = CI->use_end(); begin_ci != end_ci; ++begin_ci) { // Test if any use of CmpInst is in a Terminator if (TerminatorInst *TI = dyn_cast(begin_ci)) { insertSigma(TI, value[i], i); } } } } } } /// Inserts Sigma Functions in every BasicBlock successor to Terminator /// Instruction TI. All inserted Sigma Function are related to Instruction I. /// void SSI::insertSigma(TerminatorInst *TI, Instruction *I, unsigned pos) { // Basic Block of the Terminator Instruction BasicBlock *BB = TI->getParent(); for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) { // Next Basic Block BasicBlock *BB_next = TI->getSuccessor(i); if (BB_next != BB && BB_next->getSinglePredecessor() != NULL && dominateAny(BB_next, I)) { PHINode *PN = PHINode::Create(I->getType(), SSI_SIG, BB_next->begin()); PN->addIncoming(I, BB); sigmas.insert(std::make_pair(PN, pos)); created.insert(PN); needConstruction[pos] = true; defsites[pos].push_back(BB_next); ++NumSigmaInserted; } } } /// Insert phi functions when necessary /// void SSI::insertPhiFunctions(SmallVectorImpl &value) { DominanceFrontier *DF = &getAnalysis(); for (unsigned i = 0; i < num_values; ++i) { // Test if there were any sigmas for this variable if (needConstruction[i]) { SmallPtrSet BB_visited; // Insert phi functions if there is any sigma function while (!defsites[i].empty()) { BasicBlock *BB = defsites[i].back(); defsites[i].pop_back(); DominanceFrontier::iterator DF_BB = DF->find(BB); // The BB is unreachable. Skip it. if (DF_BB == DF->end()) continue; // Iterates through all the dominance frontier of BB for (std::set::iterator DF_BB_begin = DF_BB->second.begin(), DF_BB_end = DF_BB->second.end(); DF_BB_begin != DF_BB_end; ++DF_BB_begin) { BasicBlock *BB_dominated = *DF_BB_begin; // Test if has not yet visited this node and if the // original definition dominates this node if (BB_visited.insert(BB_dominated) && DT_->properlyDominates(value_original[i], BB_dominated) && dominateAny(BB_dominated, value[i])) { PHINode *PN = PHINode::Create( value[i]->getType(), SSI_PHI, BB_dominated->begin()); phis.insert(std::make_pair(PN, i)); created.insert(PN); defsites[i].push_back(BB_dominated); ++NumPhiInserted; } } } BB_visited.clear(); } } } /// Some initialization for the rename part /// void SSI::renameInit(SmallVectorImpl &value) { value_stack.resize(num_values); for (unsigned i = 0; i < num_values; ++i) { value_stack[i].push_back(value[i]); } } /// Renames all variables in the specified BasicBlock. /// Only variables that need to be rename will be. /// void SSI::rename(BasicBlock *BB) { BitVector *defined = new BitVector(num_values, false); // Iterate through instructions and make appropriate renaming. // For SSI_PHI (b = PHI()), store b at value_stack as a new // definition of the variable it represents. // For SSI_SIG (b = PHI(a)), substitute a with the current // value of a, present in the value_stack. // Then store bin the value_stack as the new definition of a. // For all other instructions (b = OP(a, c, d, ...)), we need to substitute // all operands with its current value, present in value_stack. for (BasicBlock::iterator begin = BB->begin(), end = BB->end(); begin != end; ++begin) { Instruction *I = begin; if (PHINode *PN = dyn_cast(I)) { // Treat PHI functions int position; // Treat SSI_PHI if ((position = getPositionPhi(PN)) != -1) { value_stack[position].push_back(PN); (*defined)[position] = true; } // Treat SSI_SIG else if ((position = getPositionSigma(PN)) != -1) { substituteUse(I); value_stack[position].push_back(PN); (*defined)[position] = true; } // Treat all other PHI functions else { substituteUse(I); } } // Treat all other functions else { substituteUse(I); } } // This loop iterates in all BasicBlocks that are successors of the current // BasicBlock. For each SSI_PHI instruction found, insert an operand. // This operand is the current operand in value_stack for the variable // in "position". And the BasicBlock this operand represents is the current // BasicBlock. for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) { BasicBlock *BB_succ = *SI; for (BasicBlock::iterator begin = BB_succ->begin(), notPhi = BB_succ->getFirstNonPHI(); begin != *notPhi; ++begin) { Instruction *I = begin; PHINode *PN = dyn_cast(I); int position; if (PN && ((position = getPositionPhi(PN)) != -1)) { PN->addIncoming(value_stack[position].back(), BB); } } } // This loop calls rename on all children from this block. This time children // refers to a successor block in the dominance tree. DomTreeNode *DTN = DT_->getNode(BB); for (DomTreeNode::iterator begin = DTN->begin(), end = DTN->end(); begin != end; ++begin) { DomTreeNodeBase *DTN_children = *begin; BasicBlock *BB_children = DTN_children->getBlock(); rename(BB_children); } // Now we remove all inserted definitions of a variable from the top of // the stack leaving the previous one as the top. if (defined->any()) { for (unsigned i = 0; i < num_values; ++i) { if ((*defined)[i]) { value_stack[i].pop_back(); } } } delete defined; } /// Substitute any use in this instruction for the last definition of /// the variable /// void SSI::substituteUse(Instruction *I) { for (unsigned i = 0, e = I->getNumOperands(); i < e; ++i) { Value *operand = I->getOperand(i); for (unsigned j = 0; j < num_values; ++j) { if (operand == value_stack[j].front() && I != value_stack[j].back()) { PHINode *PN_I = dyn_cast(I); PHINode *PN_vs = dyn_cast(value_stack[j].back()); // If a phi created in a BasicBlock is used as an operand of another // created in the same BasicBlock, this step marks this second phi, // to fix this issue later. It cannot be fixed now, because the // operands of the first phi are not final yet. if (PN_I && PN_vs && value_stack[j].back()->getParent() == I->getParent()) { phisToFix.insert(PN_I); } I->setOperand(i, value_stack[j].back()); break; } } } } /// Test if the BasicBlock BB dominates any use or definition of value. /// If it dominates a phi instruction that is on the same BasicBlock, /// that does not count. /// bool SSI::dominateAny(BasicBlock *BB, Instruction *value) { for (Value::use_iterator begin = value->use_begin(), end = value->use_end(); begin != end; ++begin) { Instruction *I = cast(*begin); BasicBlock *BB_father = I->getParent(); if (BB == BB_father && isa(I)) continue; if (DT_->dominates(BB, BB_father)) { return true; } } return false; } /// When there is a phi node that is created in a BasicBlock and it is used /// as an operand of another phi function used in the same BasicBlock, /// LLVM looks this as an error. So on the second phi, the first phi is called /// P and the BasicBlock it incomes is B. This P will be replaced by the value /// it has for BasicBlock B. It also includes undef values for predecessors /// that were not included in the phi. /// void SSI::fixPhis() { for (SmallPtrSet::iterator begin = phisToFix.begin(), end = phisToFix.end(); begin != end; ++begin) { PHINode *PN = *begin; for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) { PHINode *PN_father = dyn_cast(PN->getIncomingValue(i)); if (PN_father && PN->getParent() == PN_father->getParent() && !DT_->dominates(PN->getParent(), PN->getIncomingBlock(i))) { BasicBlock *BB = PN->getIncomingBlock(i); int pos = PN_father->getBasicBlockIndex(BB); PN->setIncomingValue(i, PN_father->getIncomingValue(pos)); } } } for (DenseMapIterator begin = phis.begin(), end = phis.end(); begin != end; ++begin) { PHINode *PN = begin->first; BasicBlock *BB = PN->getParent(); pred_iterator PI = pred_begin(BB), PE = pred_end(BB); SmallVector Preds(PI, PE); for (unsigned size = Preds.size(); PI != PE && PN->getNumIncomingValues() != size; ++PI) { bool found = false; for (unsigned i = 0, pn_end = PN->getNumIncomingValues(); i < pn_end; ++i) { if (PN->getIncomingBlock(i) == *PI) { found = true; break; } } if (!found) { PN->addIncoming(UndefValue::get(PN->getType()), *PI); } } } } /// Return which variable (position on the vector of variables) this phi /// represents on the phis list. /// unsigned SSI::getPositionPhi(PHINode *PN) { DenseMap::iterator val = phis.find(PN); if (val == phis.end()) return UNSIGNED_INFINITE; else return val->second; } /// Return which variable (position on the vector of variables) this phi /// represents on the sigmas list. /// unsigned SSI::getPositionSigma(PHINode *PN) { DenseMap::iterator val = sigmas.find(PN); if (val == sigmas.end()) return UNSIGNED_INFINITE; else return val->second; } /// Initializes /// void SSI::init(SmallVectorImpl &value) { num_values = value.size(); needConstruction.resize(num_values, false); value_original.resize(num_values); defsites.resize(num_values); for (unsigned i = 0; i < num_values; ++i) { value_original[i] = value[i]->getParent(); defsites[i].push_back(value_original[i]); } } /// Clean all used resources in this creation of SSI /// void SSI::clean() { for (unsigned i = 0; i < num_values; ++i) { defsites[i].clear(); if (i < value_stack.size()) value_stack[i].clear(); } phis.clear(); sigmas.clear(); phisToFix.clear(); defsites.clear(); value_stack.clear(); value_original.clear(); needConstruction.clear(); } /// createSSIPass - The public interface to this file... /// FunctionPass *llvm::createSSIPass() { return new SSI(); } char SSI::ID = 0; static RegisterPass X("ssi", "Static Single Information Construction"); /// SSIEverything - A pass that runs createSSI on every non-void variable, /// intended for debugging. namespace { struct VISIBILITY_HIDDEN SSIEverything : public FunctionPass { static char ID; // Pass identification, replacement for typeid SSIEverything() : FunctionPass(&ID) {} bool runOnFunction(Function &F); virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); } }; } bool SSIEverything::runOnFunction(Function &F) { SmallVector Insts; SSI &ssi = getAnalysis(); if (F.isDeclaration() || F.isIntrinsic()) return false; for (Function::iterator B = F.begin(), BE = F.end(); B != BE; ++B) for (BasicBlock::iterator I = B->begin(), E = B->end(); I != E; ++I) if (I->getType() != Type::getVoidTy(F.getContext())) Insts.push_back(I); ssi.createSSI(Insts); return true; } /// createSSIEverythingPass - The public interface to this file... /// FunctionPass *llvm::createSSIEverythingPass() { return new SSIEverything(); } char SSIEverything::ID = 0; static RegisterPass Y("ssi-everything", "Static Single Information Construction");