//===- Local.cpp - Compute a local data structure graph for a function ----===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Compute the local version of the data structure graph for a function. The // external interface to this file is the DSGraph constructor. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/DataStructure/DataStructure.h" #include "llvm/Analysis/DataStructure/DSGraph.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Instructions.h" #include "llvm/Intrinsics.h" #include "llvm/Support/GetElementPtrTypeIterator.h" #include "llvm/Support/InstVisitor.h" #include "llvm/Target/TargetData.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Timer.h" #include // FIXME: This should eventually be a FunctionPass that is automatically // aggregated into a Pass. // #include "llvm/Module.h" using namespace llvm; static RegisterPass X("datastructure", "Local Data Structure Analysis"); static cl::opt TrackIntegersAsPointers("dsa-track-integers", cl::Hidden, cl::desc("If this is set, track integers as potential pointers")); static cl::list AllocList("dsa-alloc-list", cl::value_desc("list"), cl::desc("List of functions that allocate memory from the heap"), cl::CommaSeparated, cl::Hidden); static cl::list FreeList("dsa-free-list", cl::value_desc("list"), cl::desc("List of functions that free memory from the heap"), cl::CommaSeparated, cl::Hidden); namespace llvm { namespace DS { // isPointerType - Return true if this type is big enough to hold a pointer. bool isPointerType(const Type *Ty) { if (isa(Ty)) return true; else if (TrackIntegersAsPointers && Ty->isPrimitiveType() &&Ty->isInteger()) return Ty->getPrimitiveSize() >= PointerSize; return false; } }} using namespace DS; namespace { cl::opt DisableDirectCallOpt("disable-direct-call-dsopt", cl::Hidden, cl::desc("Disable direct call optimization in " "DSGraph construction")); cl::opt DisableFieldSensitivity("disable-ds-field-sensitivity", cl::Hidden, cl::desc("Disable field sensitivity in DSGraphs")); //===--------------------------------------------------------------------===// // GraphBuilder Class //===--------------------------------------------------------------------===// // /// This class is the builder class that constructs the local data structure /// graph by performing a single pass over the function in question. /// class GraphBuilder : InstVisitor { DSGraph &G; DSNodeHandle *RetNode; // Node that gets returned... DSScalarMap &ScalarMap; std::list *FunctionCalls; public: GraphBuilder(Function &f, DSGraph &g, DSNodeHandle &retNode, std::list &fc) : G(g), RetNode(&retNode), ScalarMap(G.getScalarMap()), FunctionCalls(&fc) { // Create scalar nodes for all pointer arguments... for (Function::arg_iterator I = f.arg_begin(), E = f.arg_end(); I != E; ++I) if (isPointerType(I->getType())) getValueDest(*I); visit(f); // Single pass over the function } // GraphBuilder ctor for working on the globals graph GraphBuilder(DSGraph &g) : G(g), RetNode(0), ScalarMap(G.getScalarMap()), FunctionCalls(0) { } void mergeInGlobalInitializer(GlobalVariable *GV); private: // Visitor functions, used to handle each instruction type we encounter... friend class InstVisitor; void visitMallocInst(MallocInst &MI) { handleAlloc(MI, true); } void visitAllocaInst(AllocaInst &AI) { handleAlloc(AI, false); } void handleAlloc(AllocationInst &AI, bool isHeap); void visitPHINode(PHINode &PN); void visitSelectInst(SelectInst &SI); void visitGetElementPtrInst(User &GEP); void visitReturnInst(ReturnInst &RI); void visitLoadInst(LoadInst &LI); void visitStoreInst(StoreInst &SI); void visitCallInst(CallInst &CI); void visitInvokeInst(InvokeInst &II); void visitSetCondInst(SetCondInst &SCI); void visitFreeInst(FreeInst &FI); void visitCastInst(CastInst &CI); void visitInstruction(Instruction &I); void visitCallSite(CallSite CS); void visitVAArgInst(VAArgInst &I); void MergeConstantInitIntoNode(DSNodeHandle &NH, Constant *C); private: // Helper functions used to implement the visitation functions... /// createNode - Create a new DSNode, ensuring that it is properly added to /// the graph. /// DSNode *createNode(const Type *Ty = 0) { DSNode *N = new DSNode(Ty, &G); // Create the node if (DisableFieldSensitivity) { // Create node handle referring to the old node so that it is // immediately removed from the graph when the node handle is destroyed. DSNodeHandle OldNNH = N; N->foldNodeCompletely(); if (DSNode *FN = N->getForwardNode()) N = FN; } return N; } /// setDestTo - Set the ScalarMap entry for the specified value to point to /// the specified destination. If the Value already points to a node, make /// sure to merge the two destinations together. /// void setDestTo(Value &V, const DSNodeHandle &NH); /// getValueDest - Return the DSNode that the actual value points to. /// DSNodeHandle getValueDest(Value &V); /// getLink - This method is used to return the specified link in the /// specified node if one exists. If a link does not already exist (it's /// null), then we create a new node, link it, then return it. /// DSNodeHandle &getLink(const DSNodeHandle &Node, unsigned Link = 0); }; } using namespace DS; //===----------------------------------------------------------------------===// // DSGraph constructor - Simply use the GraphBuilder to construct the local // graph. DSGraph::DSGraph(EquivalenceClasses &ECs, const TargetData &td, Function &F, DSGraph *GG) : GlobalsGraph(GG), ScalarMap(ECs), TD(td) { PrintAuxCalls = false; DEBUG(std::cerr << " [Loc] Calculating graph for: " << F.getName() << "\n"); // Use the graph builder to construct the local version of the graph GraphBuilder B(F, *this, ReturnNodes[&F], FunctionCalls); #ifndef NDEBUG Timer::addPeakMemoryMeasurement(); #endif // If there are any constant globals referenced in this function, merge their // initializers into the local graph from the globals graph. if (ScalarMap.global_begin() != ScalarMap.global_end()) { ReachabilityCloner RC(*this, *GG, 0); for (DSScalarMap::global_iterator I = ScalarMap.global_begin(); I != ScalarMap.global_end(); ++I) if (GlobalVariable *GV = dyn_cast(*I)) if (!GV->isExternal() && GV->isConstant()) RC.merge(ScalarMap[GV], GG->ScalarMap[GV]); } markIncompleteNodes(DSGraph::MarkFormalArgs); // Remove any nodes made dead due to merging... removeDeadNodes(DSGraph::KeepUnreachableGlobals); } //===----------------------------------------------------------------------===// // Helper method implementations... // /// getValueDest - Return the DSNode that the actual value points to. /// DSNodeHandle GraphBuilder::getValueDest(Value &Val) { Value *V = &Val; if (isa(V) && cast(V)->isNullValue()) return 0; // Null doesn't point to anything, don't add to ScalarMap! DSNodeHandle &NH = ScalarMap[V]; if (!NH.isNull()) return NH; // Already have a node? Just return it... // Otherwise we need to create a new node to point to. // Check first for constant expressions that must be traversed to // extract the actual value. DSNode* N; if (GlobalValue* GV = dyn_cast(V)) { // Create a new global node for this global variable. N = createNode(GV->getType()->getElementType()); N->addGlobal(GV); } else if (Constant *C = dyn_cast(V)) { if (ConstantExpr *CE = dyn_cast(C)) { if (CE->getOpcode() == Instruction::Cast) { if (isa(CE->getOperand(0)->getType())) NH = getValueDest(*CE->getOperand(0)); else NH = createNode()->setUnknownNodeMarker(); } else if (CE->getOpcode() == Instruction::GetElementPtr) { visitGetElementPtrInst(*CE); DSScalarMap::iterator I = ScalarMap.find(CE); assert(I != ScalarMap.end() && "GEP didn't get processed right?"); NH = I->second; } else { // This returns a conservative unknown node for any unhandled ConstExpr return NH = createNode()->setUnknownNodeMarker(); } if (NH.isNull()) { // (getelementptr null, X) returns null ScalarMap.erase(V); return 0; } return NH; } else if (isa(C)) { ScalarMap.erase(V); return 0; } else { assert(0 && "Unknown constant type!"); } N = createNode(); // just create a shadow node } else { // Otherwise just create a shadow node N = createNode(); } NH.setTo(N, 0); // Remember that we are pointing to it... return NH; } /// getLink - This method is used to return the specified link in the /// specified node if one exists. If a link does not already exist (it's /// null), then we create a new node, link it, then return it. We must /// specify the type of the Node field we are accessing so that we know what /// type should be linked to if we need to create a new node. /// DSNodeHandle &GraphBuilder::getLink(const DSNodeHandle &node, unsigned LinkNo) { DSNodeHandle &Node = const_cast(node); DSNodeHandle &Link = Node.getLink(LinkNo); if (Link.isNull()) { // If the link hasn't been created yet, make and return a new shadow node Link = createNode(); } return Link; } /// setDestTo - Set the ScalarMap entry for the specified value to point to the /// specified destination. If the Value already points to a node, make sure to /// merge the two destinations together. /// void GraphBuilder::setDestTo(Value &V, const DSNodeHandle &NH) { ScalarMap[&V].mergeWith(NH); } //===----------------------------------------------------------------------===// // Specific instruction type handler implementations... // /// Alloca & Malloc instruction implementation - Simply create a new memory /// object, pointing the scalar to it. /// void GraphBuilder::handleAlloc(AllocationInst &AI, bool isHeap) { DSNode *N = createNode(); if (isHeap) N->setHeapNodeMarker(); else N->setAllocaNodeMarker(); setDestTo(AI, N); } // PHINode - Make the scalar for the PHI node point to all of the things the // incoming values point to... which effectively causes them to be merged. // void GraphBuilder::visitPHINode(PHINode &PN) { if (!isPointerType(PN.getType())) return; // Only pointer PHIs DSNodeHandle &PNDest = ScalarMap[&PN]; for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) PNDest.mergeWith(getValueDest(*PN.getIncomingValue(i))); } void GraphBuilder::visitSelectInst(SelectInst &SI) { if (!isPointerType(SI.getType())) return; // Only pointer Selects DSNodeHandle &Dest = ScalarMap[&SI]; Dest.mergeWith(getValueDest(*SI.getOperand(1))); Dest.mergeWith(getValueDest(*SI.getOperand(2))); } void GraphBuilder::visitSetCondInst(SetCondInst &SCI) { if (!isPointerType(SCI.getOperand(0)->getType()) || isa(SCI.getOperand(1))) return; // Only pointers ScalarMap[SCI.getOperand(0)].mergeWith(getValueDest(*SCI.getOperand(1))); } void GraphBuilder::visitGetElementPtrInst(User &GEP) { DSNodeHandle Value = getValueDest(*GEP.getOperand(0)); if (Value.isNull()) Value = createNode(); // As a special case, if all of the index operands of GEP are constant zeros, // handle this just like we handle casts (ie, don't do much). bool AllZeros = true; for (unsigned i = 1, e = GEP.getNumOperands(); i != e; ++i) if (GEP.getOperand(i) != Constant::getNullValue(GEP.getOperand(i)->getType())) { AllZeros = false; break; } // If all of the indices are zero, the result points to the operand without // applying the type. if (AllZeros || (!Value.isNull() && Value.getNode()->isNodeCompletelyFolded())) { setDestTo(GEP, Value); return; } const PointerType *PTy = cast(GEP.getOperand(0)->getType()); const Type *CurTy = PTy->getElementType(); if (Value.getNode()->mergeTypeInfo(CurTy, Value.getOffset())) { // If the node had to be folded... exit quickly setDestTo(GEP, Value); // GEP result points to folded node return; } const TargetData &TD = Value.getNode()->getTargetData(); #if 0 // Handle the pointer index specially... if (GEP.getNumOperands() > 1 && (!isa(GEP.getOperand(1)) || !cast(GEP.getOperand(1))->isNullValue())) { // If we already know this is an array being accessed, don't do anything... if (!TopTypeRec.isArray) { TopTypeRec.isArray = true; // If we are treating some inner field pointer as an array, fold the node // up because we cannot handle it right. This can come because of // something like this: &((&Pt->X)[1]) == &Pt->Y // if (Value.getOffset()) { // Value is now the pointer we want to GEP to be... Value.getNode()->foldNodeCompletely(); setDestTo(GEP, Value); // GEP result points to folded node return; } else { // This is a pointer to the first byte of the node. Make sure that we // are pointing to the outter most type in the node. // FIXME: We need to check one more case here... } } } #endif // All of these subscripts are indexing INTO the elements we have... unsigned Offset = 0; for (gep_type_iterator I = gep_type_begin(GEP), E = gep_type_end(GEP); I != E; ++I) if (const StructType *STy = dyn_cast(*I)) { unsigned FieldNo = (unsigned)cast(I.getOperand())->getValue(); Offset += (unsigned)TD.getStructLayout(STy)->MemberOffsets[FieldNo]; } else if (const PointerType *PTy = dyn_cast(*I)) { if (!isa(I.getOperand()) || !cast(I.getOperand())->isNullValue()) Value.getNode()->setArrayMarker(); } #if 0 if (const SequentialType *STy = cast(*I)) { CurTy = STy->getElementType(); if (ConstantSInt *CS = dyn_cast(GEP.getOperand(i))) { Offset += CS->getValue()*TD.getTypeSize(CurTy); } else { // Variable index into a node. We must merge all of the elements of the // sequential type here. if (isa(STy)) std::cerr << "Pointer indexing not handled yet!\n"; else { const ArrayType *ATy = cast(STy); unsigned ElSize = TD.getTypeSize(CurTy); DSNode *N = Value.getNode(); assert(N && "Value must have a node!"); unsigned RawOffset = Offset+Value.getOffset(); // Loop over all of the elements of the array, merging them into the // zeroth element. for (unsigned i = 1, e = ATy->getNumElements(); i != e; ++i) // Merge all of the byte components of this array element for (unsigned j = 0; j != ElSize; ++j) N->mergeIndexes(RawOffset+j, RawOffset+i*ElSize+j); } } } #endif // Add in the offset calculated... Value.setOffset(Value.getOffset()+Offset); // Check the offset DSNode *N = Value.getNode(); if (N && !N->isNodeCompletelyFolded() && (N->getSize() != 0 || Offset != 0) && !N->isForwarding()) { if ((Offset >= N->getSize()) || int(Offset) < 0) { // Accessing offsets out of node size range // This is seen in the "magic" struct in named (from bind), where the // fourth field is an array of length 0, presumably used to create struct // instances of different sizes // Collapse the node since its size is now variable N->foldNodeCompletely(); } } // Value is now the pointer we want to GEP to be... setDestTo(GEP, Value); } void GraphBuilder::visitLoadInst(LoadInst &LI) { DSNodeHandle Ptr = getValueDest(*LI.getOperand(0)); if (Ptr.isNull()) Ptr = createNode(); // Make that the node is read from... Ptr.getNode()->setReadMarker(); // Ensure a typerecord exists... Ptr.getNode()->mergeTypeInfo(LI.getType(), Ptr.getOffset(), false); if (isPointerType(LI.getType())) setDestTo(LI, getLink(Ptr)); } void GraphBuilder::visitStoreInst(StoreInst &SI) { const Type *StoredTy = SI.getOperand(0)->getType(); DSNodeHandle Dest = getValueDest(*SI.getOperand(1)); if (Dest.isNull()) return; // Mark that the node is written to... Dest.getNode()->setModifiedMarker(); // Ensure a type-record exists... Dest.getNode()->mergeTypeInfo(StoredTy, Dest.getOffset()); // Avoid adding edges from null, or processing non-"pointer" stores if (isPointerType(StoredTy)) Dest.addEdgeTo(getValueDest(*SI.getOperand(0))); } void GraphBuilder::visitReturnInst(ReturnInst &RI) { if (RI.getNumOperands() && isPointerType(RI.getOperand(0)->getType())) RetNode->mergeWith(getValueDest(*RI.getOperand(0))); } void GraphBuilder::visitVAArgInst(VAArgInst &I) { //FIXME: also updates the argument DSNodeHandle Ptr = getValueDest(*I.getOperand(0)); if (Ptr.isNull()) return; // Make that the node is read from. Ptr.getNode()->setReadMarker(); // Ensure a type record exists. DSNode *PtrN = Ptr.getNode(); PtrN->mergeTypeInfo(I.getType(), Ptr.getOffset(), false); if (isPointerType(I.getType())) setDestTo(I, getLink(Ptr)); } void GraphBuilder::visitCallInst(CallInst &CI) { visitCallSite(&CI); } void GraphBuilder::visitInvokeInst(InvokeInst &II) { visitCallSite(&II); } void GraphBuilder::visitCallSite(CallSite CS) { Value *Callee = CS.getCalledValue(); // Special case handling of certain libc allocation functions here. if (Function *F = dyn_cast(Callee)) if (F->isExternal()) switch (F->getIntrinsicID()) { case Intrinsic::vastart: getValueDest(*CS.getInstruction()).getNode()->setAllocaNodeMarker(); return; case Intrinsic::vacopy: getValueDest(*CS.getInstruction()). mergeWith(getValueDest(**(CS.arg_begin()))); return; case Intrinsic::vaend: return; // noop case Intrinsic::memcpy_i32: case Intrinsic::memcpy_i64: case Intrinsic::memmove_i32: case Intrinsic::memmove_i64: { // Merge the first & second arguments, and mark the memory read and // modified. DSNodeHandle RetNH = getValueDest(**CS.arg_begin()); RetNH.mergeWith(getValueDest(**(CS.arg_begin()+1))); if (DSNode *N = RetNH.getNode()) N->setModifiedMarker()->setReadMarker(); return; } case Intrinsic::memset_i32: case Intrinsic::memset_i64: // Mark the memory modified. if (DSNode *N = getValueDest(**CS.arg_begin()).getNode()) N->setModifiedMarker(); return; default: // Determine if the called function is one of the specified heap // allocation functions for (cl::list::iterator AllocFunc = AllocList.begin(), LastAllocFunc = AllocList.end(); AllocFunc != LastAllocFunc; ++AllocFunc) { if (F->getName() == *(AllocFunc)) { setDestTo(*CS.getInstruction(), createNode()->setHeapNodeMarker()->setModifiedMarker()); return; } } // Determine if the called function is one of the specified heap // free functions for (cl::list::iterator FreeFunc = FreeList.begin(), LastFreeFunc = FreeList.end(); FreeFunc != LastFreeFunc; ++FreeFunc) { if (F->getName() == *(FreeFunc)) { // Mark that the node is written to... if (DSNode *N = getValueDest(*(CS.getArgument(0))).getNode()) N->setModifiedMarker()->setHeapNodeMarker(); return; } } //gets select localtime ioctl if ((F->isExternal() && F->getName() == "calloc") || F->getName() == "posix_memalign" || F->getName() == "memalign" || F->getName() == "valloc") { setDestTo(*CS.getInstruction(), createNode()->setHeapNodeMarker()->setModifiedMarker()); return; } else if (F->getName() == "realloc") { DSNodeHandle RetNH = getValueDest(*CS.getInstruction()); if (CS.arg_begin() != CS.arg_end()) RetNH.mergeWith(getValueDest(**CS.arg_begin())); if (DSNode *N = RetNH.getNode()) N->setHeapNodeMarker()->setModifiedMarker()->setReadMarker(); return; } else if (F->getName() == "memmove") { // Merge the first & second arguments, and mark the memory read and // modified. DSNodeHandle RetNH = getValueDest(**CS.arg_begin()); RetNH.mergeWith(getValueDest(**(CS.arg_begin()+1))); if (DSNode *N = RetNH.getNode()) N->setModifiedMarker()->setReadMarker(); return; } else if (F->getName() == "free") { // Mark that the node is written to... if (DSNode *N = getValueDest(**CS.arg_begin()).getNode()) N->setModifiedMarker()->setHeapNodeMarker(); } else if (F->getName() == "atoi" || F->getName() == "atof" || F->getName() == "atol" || F->getName() == "atoll" || F->getName() == "remove" || F->getName() == "unlink" || F->getName() == "rename" || F->getName() == "memcmp" || F->getName() == "strcmp" || F->getName() == "strncmp" || F->getName() == "execl" || F->getName() == "execlp" || F->getName() == "execle" || F->getName() == "execv" || F->getName() == "execvp" || F->getName() == "chmod" || F->getName() == "puts" || F->getName() == "write" || F->getName() == "open" || F->getName() == "create" || F->getName() == "truncate" || F->getName() == "chdir" || F->getName() == "mkdir" || F->getName() == "rmdir" || F->getName() == "strlen") { // These functions read all of their pointer operands. for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end(); AI != E; ++AI) { if (isPointerType((*AI)->getType())) if (DSNode *N = getValueDest(**AI).getNode()) N->setReadMarker(); } return; } else if (F->getName() == "memchr") { DSNodeHandle RetNH = getValueDest(**CS.arg_begin()); DSNodeHandle Result = getValueDest(*CS.getInstruction()); RetNH.mergeWith(Result); if (DSNode *N = RetNH.getNode()) N->setReadMarker(); return; } else if (F->getName() == "read" || F->getName() == "pipe" || F->getName() == "wait" || F->getName() == "time" || F->getName() == "getrusage") { // These functions write all of their pointer operands. for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end(); AI != E; ++AI) { if (isPointerType((*AI)->getType())) if (DSNode *N = getValueDest(**AI).getNode()) N->setModifiedMarker(); } return; } else if (F->getName() == "stat" || F->getName() == "fstat" || F->getName() == "lstat") { // These functions read their first operand if its a pointer. CallSite::arg_iterator AI = CS.arg_begin(); if (isPointerType((*AI)->getType())) { DSNodeHandle Path = getValueDest(**AI); if (DSNode *N = Path.getNode()) N->setReadMarker(); } // Then they write into the stat buffer. DSNodeHandle StatBuf = getValueDest(**++AI); if (DSNode *N = StatBuf.getNode()) { N->setModifiedMarker(); const Type *StatTy = F->getFunctionType()->getParamType(1); if (const PointerType *PTy = dyn_cast(StatTy)) N->mergeTypeInfo(PTy->getElementType(), StatBuf.getOffset()); } return; } else if (F->getName() == "strtod" || F->getName() == "strtof" || F->getName() == "strtold") { // These functions read the first pointer if (DSNode *Str = getValueDest(**CS.arg_begin()).getNode()) { Str->setReadMarker(); // If the second parameter is passed, it will point to the first // argument node. const DSNodeHandle &EndPtrNH = getValueDest(**(CS.arg_begin()+1)); if (DSNode *End = EndPtrNH.getNode()) { End->mergeTypeInfo(PointerType::get(Type::SByteTy), EndPtrNH.getOffset(), false); End->setModifiedMarker(); DSNodeHandle &Link = getLink(EndPtrNH); Link.mergeWith(getValueDest(**CS.arg_begin())); } } return; } else if (F->getName() == "fopen" || F->getName() == "fdopen" || F->getName() == "freopen") { // These functions read all of their pointer operands. for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end(); AI != E; ++AI) if (isPointerType((*AI)->getType())) if (DSNode *N = getValueDest(**AI).getNode()) N->setReadMarker(); // fopen allocates in an unknown way and writes to the file // descriptor. Also, merge the allocated type into the node. DSNodeHandle Result = getValueDest(*CS.getInstruction()); if (DSNode *N = Result.getNode()) { N->setModifiedMarker()->setUnknownNodeMarker(); const Type *RetTy = F->getFunctionType()->getReturnType(); if (const PointerType *PTy = dyn_cast(RetTy)) N->mergeTypeInfo(PTy->getElementType(), Result.getOffset()); } // If this is freopen, merge the file descriptor passed in with the // result. if (F->getName() == "freopen") { // ICC doesn't handle getting the iterator, decrementing and // dereferencing it in one operation without error. Do it in 2 steps CallSite::arg_iterator compit = CS.arg_end(); Result.mergeWith(getValueDest(**--compit)); } return; } else if (F->getName() == "fclose" && CS.arg_end()-CS.arg_begin() ==1){ // fclose reads and deallocates the memory in an unknown way for the // file descriptor. It merges the FILE type into the descriptor. DSNodeHandle H = getValueDest(**CS.arg_begin()); if (DSNode *N = H.getNode()) { N->setReadMarker()->setUnknownNodeMarker(); const Type *ArgTy = F->getFunctionType()->getParamType(0); if (const PointerType *PTy = dyn_cast(ArgTy)) N->mergeTypeInfo(PTy->getElementType(), H.getOffset()); } return; } else if (CS.arg_end()-CS.arg_begin() == 1 && (F->getName() == "fflush" || F->getName() == "feof" || F->getName() == "fileno" || F->getName() == "clearerr" || F->getName() == "rewind" || F->getName() == "ftell" || F->getName() == "ferror" || F->getName() == "fgetc" || F->getName() == "fgetc" || F->getName() == "_IO_getc")) { // fflush reads and writes the memory for the file descriptor. It // merges the FILE type into the descriptor. DSNodeHandle H = getValueDest(**CS.arg_begin()); if (DSNode *N = H.getNode()) { N->setReadMarker()->setModifiedMarker(); const Type *ArgTy = F->getFunctionType()->getParamType(0); if (const PointerType *PTy = dyn_cast(ArgTy)) N->mergeTypeInfo(PTy->getElementType(), H.getOffset()); } return; } else if (CS.arg_end()-CS.arg_begin() == 4 && (F->getName() == "fwrite" || F->getName() == "fread")) { // fread writes the first operand, fwrite reads it. They both // read/write the FILE descriptor, and merges the FILE type. CallSite::arg_iterator compit = CS.arg_end(); DSNodeHandle H = getValueDest(**--compit); if (DSNode *N = H.getNode()) { N->setReadMarker()->setModifiedMarker(); const Type *ArgTy = F->getFunctionType()->getParamType(3); if (const PointerType *PTy = dyn_cast(ArgTy)) N->mergeTypeInfo(PTy->getElementType(), H.getOffset()); } H = getValueDest(**CS.arg_begin()); if (DSNode *N = H.getNode()) if (F->getName() == "fwrite") N->setReadMarker(); else N->setModifiedMarker(); return; } else if (F->getName() == "fgets" && CS.arg_end()-CS.arg_begin() == 3){ // fgets reads and writes the memory for the file descriptor. It // merges the FILE type into the descriptor, and writes to the // argument. It returns the argument as well. CallSite::arg_iterator AI = CS.arg_begin(); DSNodeHandle H = getValueDest(**AI); if (DSNode *N = H.getNode()) N->setModifiedMarker(); // Writes buffer H.mergeWith(getValueDest(*CS.getInstruction())); // Returns buffer ++AI; ++AI; // Reads and writes file descriptor, merge in FILE type. H = getValueDest(**AI); if (DSNode *N = H.getNode()) { N->setReadMarker()->setModifiedMarker(); const Type *ArgTy = F->getFunctionType()->getParamType(2); if (const PointerType *PTy = dyn_cast(ArgTy)) N->mergeTypeInfo(PTy->getElementType(), H.getOffset()); } return; } else if (F->getName() == "ungetc" || F->getName() == "fputc" || F->getName() == "fputs" || F->getName() == "putc" || F->getName() == "ftell" || F->getName() == "rewind" || F->getName() == "_IO_putc") { // These functions read and write the memory for the file descriptor, // which is passes as the last argument. CallSite::arg_iterator compit = CS.arg_end(); DSNodeHandle H = getValueDest(**--compit); if (DSNode *N = H.getNode()) { N->setReadMarker()->setModifiedMarker(); FunctionType::param_iterator compit2 = F->getFunctionType()->param_end(); const Type *ArgTy = *--compit2; if (const PointerType *PTy = dyn_cast(ArgTy)) N->mergeTypeInfo(PTy->getElementType(), H.getOffset()); } // Any pointer arguments are read. for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end(); AI != E; ++AI) if (isPointerType((*AI)->getType())) if (DSNode *N = getValueDest(**AI).getNode()) N->setReadMarker(); return; } else if (F->getName() == "fseek" || F->getName() == "fgetpos" || F->getName() == "fsetpos") { // These functions read and write the memory for the file descriptor, // and read/write all other arguments. DSNodeHandle H = getValueDest(**CS.arg_begin()); if (DSNode *N = H.getNode()) { FunctionType::param_iterator compit2 = F->getFunctionType()->param_end(); const Type *ArgTy = *--compit2; if (const PointerType *PTy = dyn_cast(ArgTy)) N->mergeTypeInfo(PTy->getElementType(), H.getOffset()); } // Any pointer arguments are read. for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end(); AI != E; ++AI) if (isPointerType((*AI)->getType())) if (DSNode *N = getValueDest(**AI).getNode()) N->setReadMarker()->setModifiedMarker(); return; } else if (F->getName() == "printf" || F->getName() == "fprintf" || F->getName() == "sprintf") { CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end(); if (F->getName() == "fprintf") { // fprintf reads and writes the FILE argument, and applies the type // to it. DSNodeHandle H = getValueDest(**AI); if (DSNode *N = H.getNode()) { N->setModifiedMarker(); const Type *ArgTy = (*AI)->getType(); if (const PointerType *PTy = dyn_cast(ArgTy)) N->mergeTypeInfo(PTy->getElementType(), H.getOffset()); } } else if (F->getName() == "sprintf") { // sprintf writes the first string argument. DSNodeHandle H = getValueDest(**AI++); if (DSNode *N = H.getNode()) { N->setModifiedMarker(); const Type *ArgTy = (*AI)->getType(); if (const PointerType *PTy = dyn_cast(ArgTy)) N->mergeTypeInfo(PTy->getElementType(), H.getOffset()); } } for (; AI != E; ++AI) { // printf reads all pointer arguments. if (isPointerType((*AI)->getType())) if (DSNode *N = getValueDest(**AI).getNode()) N->setReadMarker(); } return; } else if (F->getName() == "vprintf" || F->getName() == "vfprintf" || F->getName() == "vsprintf") { CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end(); if (F->getName() == "vfprintf") { // ffprintf reads and writes the FILE argument, and applies the type // to it. DSNodeHandle H = getValueDest(**AI); if (DSNode *N = H.getNode()) { N->setModifiedMarker()->setReadMarker(); const Type *ArgTy = (*AI)->getType(); if (const PointerType *PTy = dyn_cast(ArgTy)) N->mergeTypeInfo(PTy->getElementType(), H.getOffset()); } ++AI; } else if (F->getName() == "vsprintf") { // vsprintf writes the first string argument. DSNodeHandle H = getValueDest(**AI++); if (DSNode *N = H.getNode()) { N->setModifiedMarker(); const Type *ArgTy = (*AI)->getType(); if (const PointerType *PTy = dyn_cast(ArgTy)) N->mergeTypeInfo(PTy->getElementType(), H.getOffset()); } } // Read the format if (AI != E) { if (isPointerType((*AI)->getType())) if (DSNode *N = getValueDest(**AI).getNode()) N->setReadMarker(); ++AI; } // Read the valist, and the pointed-to objects. if (AI != E && isPointerType((*AI)->getType())) { const DSNodeHandle &VAList = getValueDest(**AI); if (DSNode *N = VAList.getNode()) { N->setReadMarker(); N->mergeTypeInfo(PointerType::get(Type::SByteTy), VAList.getOffset(), false); DSNodeHandle &VAListObjs = getLink(VAList); VAListObjs.getNode()->setReadMarker(); } } return; } else if (F->getName() == "scanf" || F->getName() == "fscanf" || F->getName() == "sscanf") { CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end(); if (F->getName() == "fscanf") { // fscanf reads and writes the FILE argument, and applies the type // to it. DSNodeHandle H = getValueDest(**AI); if (DSNode *N = H.getNode()) { N->setReadMarker(); const Type *ArgTy = (*AI)->getType(); if (const PointerType *PTy = dyn_cast(ArgTy)) N->mergeTypeInfo(PTy->getElementType(), H.getOffset()); } } else if (F->getName() == "sscanf") { // sscanf reads the first string argument. DSNodeHandle H = getValueDest(**AI++); if (DSNode *N = H.getNode()) { N->setReadMarker(); const Type *ArgTy = (*AI)->getType(); if (const PointerType *PTy = dyn_cast(ArgTy)) N->mergeTypeInfo(PTy->getElementType(), H.getOffset()); } } for (; AI != E; ++AI) { // scanf writes all pointer arguments. if (isPointerType((*AI)->getType())) if (DSNode *N = getValueDest(**AI).getNode()) N->setModifiedMarker(); } return; } else if (F->getName() == "strtok") { // strtok reads and writes the first argument, returning it. It reads // its second arg. FIXME: strtok also modifies some hidden static // data. Someday this might matter. CallSite::arg_iterator AI = CS.arg_begin(); DSNodeHandle H = getValueDest(**AI++); if (DSNode *N = H.getNode()) { N->setReadMarker()->setModifiedMarker(); // Reads/Writes buffer const Type *ArgTy = F->getFunctionType()->getParamType(0); if (const PointerType *PTy = dyn_cast(ArgTy)) N->mergeTypeInfo(PTy->getElementType(), H.getOffset()); } H.mergeWith(getValueDest(*CS.getInstruction())); // Returns buffer H = getValueDest(**AI); // Reads delimiter if (DSNode *N = H.getNode()) { N->setReadMarker(); const Type *ArgTy = F->getFunctionType()->getParamType(1); if (const PointerType *PTy = dyn_cast(ArgTy)) N->mergeTypeInfo(PTy->getElementType(), H.getOffset()); } return; } else if (F->getName() == "strchr" || F->getName() == "strrchr" || F->getName() == "strstr") { // These read their arguments, and return the first one DSNodeHandle H = getValueDest(**CS.arg_begin()); H.mergeWith(getValueDest(*CS.getInstruction())); // Returns buffer for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end(); AI != E; ++AI) if (isPointerType((*AI)->getType())) if (DSNode *N = getValueDest(**AI).getNode()) N->setReadMarker(); if (DSNode *N = H.getNode()) N->setReadMarker(); return; } else if (F->getName() == "__assert_fail") { for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end(); AI != E; ++AI) if (isPointerType((*AI)->getType())) if (DSNode *N = getValueDest(**AI).getNode()) N->setReadMarker(); return; } else if (F->getName() == "modf" && CS.arg_end()-CS.arg_begin() == 2) { // This writes its second argument, and forces it to double. CallSite::arg_iterator compit = CS.arg_end(); DSNodeHandle H = getValueDest(**--compit); if (DSNode *N = H.getNode()) { N->setModifiedMarker(); N->mergeTypeInfo(Type::DoubleTy, H.getOffset()); } return; } else if (F->getName() == "strcat" || F->getName() == "strncat") { //This might be making unsafe assumptions about usage //Merge return and first arg DSNodeHandle RetNH = getValueDest(*CS.getInstruction()); RetNH.mergeWith(getValueDest(**CS.arg_begin())); if (DSNode *N = RetNH.getNode()) N->setHeapNodeMarker()->setModifiedMarker()->setReadMarker(); //and read second pointer if (DSNode *N = getValueDest(**(CS.arg_begin() + 1)).getNode()) N->setReadMarker(); return; } else if (F->getName() == "strcpy" || F->getName() == "strncpy") { //This might be making unsafe assumptions about usage //Merge return and first arg DSNodeHandle RetNH = getValueDest(*CS.getInstruction()); RetNH.mergeWith(getValueDest(**CS.arg_begin())); if (DSNode *N = RetNH.getNode()) N->setHeapNodeMarker()->setModifiedMarker(); //and read second pointer if (DSNode *N = getValueDest(**(CS.arg_begin() + 1)).getNode()) N->setReadMarker(); return; } else { // Unknown function, warn if it returns a pointer type or takes a // pointer argument. bool Warn = isPointerType(CS.getInstruction()->getType()); if (!Warn) for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); I != E; ++I) if (isPointerType((*I)->getType())) { Warn = true; break; } if (Warn) std::cerr << "WARNING: Call to unknown external function '" << F->getName() << "' will cause pessimistic results!\n"; } } // Set up the return value... DSNodeHandle RetVal; Instruction *I = CS.getInstruction(); if (isPointerType(I->getType())) RetVal = getValueDest(*I); DSNode *CalleeNode = 0; if (DisableDirectCallOpt || !isa(Callee)) { CalleeNode = getValueDest(*Callee).getNode(); if (CalleeNode == 0) { std::cerr << "WARNING: Program is calling through a null pointer?\n"<< *I; return; // Calling a null pointer? } } std::vector Args; Args.reserve(CS.arg_end()-CS.arg_begin()); // Calculate the arguments vector... for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); I != E; ++I) if (isPointerType((*I)->getType())) Args.push_back(getValueDest(**I)); // Add a new function call entry... if (CalleeNode) FunctionCalls->push_back(DSCallSite(CS, RetVal, CalleeNode, Args)); else FunctionCalls->push_back(DSCallSite(CS, RetVal, cast(Callee), Args)); } void GraphBuilder::visitFreeInst(FreeInst &FI) { // Mark that the node is written to... if (DSNode *N = getValueDest(*FI.getOperand(0)).getNode()) N->setModifiedMarker()->setHeapNodeMarker(); } /// Handle casts... void GraphBuilder::visitCastInst(CastInst &CI) { if (isPointerType(CI.getType())) if (isPointerType(CI.getOperand(0)->getType())) { DSNodeHandle Ptr = getValueDest(*CI.getOperand(0)); if (Ptr.getNode() == 0) return; // Cast one pointer to the other, just act like a copy instruction setDestTo(CI, Ptr); } else { // Cast something (floating point, small integer) to a pointer. We need // to track the fact that the node points to SOMETHING, just something we // don't know about. Make an "Unknown" node. // setDestTo(CI, createNode()->setUnknownNodeMarker()); } } // visitInstruction - For all other instruction types, if we have any arguments // that are of pointer type, make them have unknown composition bits, and merge // the nodes together. void GraphBuilder::visitInstruction(Instruction &Inst) { DSNodeHandle CurNode; if (isPointerType(Inst.getType())) CurNode = getValueDest(Inst); for (User::op_iterator I = Inst.op_begin(), E = Inst.op_end(); I != E; ++I) if (isPointerType((*I)->getType())) CurNode.mergeWith(getValueDest(**I)); if (DSNode *N = CurNode.getNode()) N->setUnknownNodeMarker(); } //===----------------------------------------------------------------------===// // LocalDataStructures Implementation //===----------------------------------------------------------------------===// // MergeConstantInitIntoNode - Merge the specified constant into the node // pointed to by NH. void GraphBuilder::MergeConstantInitIntoNode(DSNodeHandle &NH, Constant *C) { // Ensure a type-record exists... DSNode *NHN = NH.getNode(); NHN->mergeTypeInfo(C->getType(), NH.getOffset()); if (C->getType()->isFirstClassType()) { if (isPointerType(C->getType())) // Avoid adding edges from null, or processing non-"pointer" stores NH.addEdgeTo(getValueDest(*C)); return; } const TargetData &TD = NH.getNode()->getTargetData(); if (ConstantArray *CA = dyn_cast(C)) { for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) // We don't currently do any indexing for arrays... MergeConstantInitIntoNode(NH, cast(CA->getOperand(i))); } else if (ConstantStruct *CS = dyn_cast(C)) { const StructLayout *SL = TD.getStructLayout(CS->getType()); for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { DSNode *NHN = NH.getNode(); //Some programmers think ending a structure with a [0 x sbyte] is cute if (SL->MemberOffsets[i] < SL->StructSize) { DSNodeHandle NewNH(NHN, NH.getOffset()+(unsigned)SL->MemberOffsets[i]); MergeConstantInitIntoNode(NewNH, cast(CS->getOperand(i))); } else if (SL->MemberOffsets[i] == SL->StructSize) { DEBUG(std::cerr << "Zero size element at end of struct\n"); NHN->foldNodeCompletely(); } else { assert(0 && "type was smaller than offsets of of struct layout indicate"); } } } else if (isa(C) || isa(C)) { // Noop } else { assert(0 && "Unknown constant type!"); } } void GraphBuilder::mergeInGlobalInitializer(GlobalVariable *GV) { assert(!GV->isExternal() && "Cannot merge in external global!"); // Get a node handle to the global node and merge the initializer into it. DSNodeHandle NH = getValueDest(*GV); MergeConstantInitIntoNode(NH, GV->getInitializer()); } /// BuildGlobalECs - Look at all of the nodes in the globals graph. If any node /// contains multiple globals, DSA will never, ever, be able to tell the globals /// apart. Instead of maintaining this information in all of the graphs /// throughout the entire program, store only a single global (the "leader") in /// the graphs, and build equivalence classes for the rest of the globals. static void BuildGlobalECs(DSGraph &GG, std::set &ECGlobals) { DSScalarMap &SM = GG.getScalarMap(); EquivalenceClasses &GlobalECs = SM.getGlobalECs(); for (DSGraph::node_iterator I = GG.node_begin(), E = GG.node_end(); I != E; ++I) { if (I->getGlobalsList().size() <= 1) continue; // First, build up the equivalence set for this block of globals. const std::vector &GVs = I->getGlobalsList(); GlobalValue *First = GVs[0]; for (unsigned i = 1, e = GVs.size(); i != e; ++i) GlobalECs.unionSets(First, GVs[i]); // Next, get the leader element. assert(First == GlobalECs.getLeaderValue(First) && "First did not end up being the leader?"); // Next, remove all globals from the scalar map that are not the leader. assert(GVs[0] == First && "First had to be at the front!"); for (unsigned i = 1, e = GVs.size(); i != e; ++i) { ECGlobals.insert(GVs[i]); SM.erase(SM.find(GVs[i])); } // Finally, change the global node to only contain the leader. I->clearGlobals(); I->addGlobal(First); } DEBUG(GG.AssertGraphOK()); } /// EliminateUsesOfECGlobals - Once we have determined that some globals are in /// really just equivalent to some other globals, remove the globals from the /// specified DSGraph (if present), and merge any nodes with their leader nodes. static void EliminateUsesOfECGlobals(DSGraph &G, const std::set &ECGlobals) { DSScalarMap &SM = G.getScalarMap(); EquivalenceClasses &GlobalECs = SM.getGlobalECs(); bool MadeChange = false; for (DSScalarMap::global_iterator GI = SM.global_begin(), E = SM.global_end(); GI != E; ) { GlobalValue *GV = *GI++; if (!ECGlobals.count(GV)) continue; const DSNodeHandle &GVNH = SM[GV]; assert(!GVNH.isNull() && "Global has null NH!?"); // Okay, this global is in some equivalence class. Start by finding the // leader of the class. GlobalValue *Leader = GlobalECs.getLeaderValue(GV); // If the leader isn't already in the graph, insert it into the node // corresponding to GV. if (!SM.global_count(Leader)) { GVNH.getNode()->addGlobal(Leader); SM[Leader] = GVNH; } else { // Otherwise, the leader is in the graph, make sure the nodes are the // merged in the specified graph. const DSNodeHandle &LNH = SM[Leader]; if (LNH.getNode() != GVNH.getNode()) LNH.mergeWith(GVNH); } // Next step, remove the global from the DSNode. GVNH.getNode()->removeGlobal(GV); // Finally, remove the global from the ScalarMap. SM.erase(GV); MadeChange = true; } DEBUG(if(MadeChange) G.AssertGraphOK()); } bool LocalDataStructures::runOnModule(Module &M) { const TargetData &TD = getAnalysis(); // First step, build the globals graph. GlobalsGraph = new DSGraph(GlobalECs, TD); { GraphBuilder GGB(*GlobalsGraph); // Add initializers for all of the globals to the globals graph. for (Module::global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I) if (!I->isExternal()) GGB.mergeInGlobalInitializer(I); } // Next step, iterate through the nodes in the globals graph, unioning // together the globals into equivalence classes. std::set ECGlobals; BuildGlobalECs(*GlobalsGraph, ECGlobals); DEBUG(std::cerr << "Eliminating " << ECGlobals.size() << " EC Globals!\n"); ECGlobals.clear(); // Calculate all of the graphs... for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) if (!I->isExternal()) DSInfo.insert(std::make_pair(I, new DSGraph(GlobalECs, TD, *I, GlobalsGraph))); GlobalsGraph->removeTriviallyDeadNodes(); GlobalsGraph->markIncompleteNodes(DSGraph::MarkFormalArgs); // Now that we've computed all of the graphs, and merged all of the info into // the globals graph, see if we have further constrained the globals in the // program if so, update GlobalECs and remove the extraneous globals from the // program. BuildGlobalECs(*GlobalsGraph, ECGlobals); if (!ECGlobals.empty()) { DEBUG(std::cerr << "Eliminating " << ECGlobals.size() << " EC Globals!\n"); for (hash_map::iterator I = DSInfo.begin(), E = DSInfo.end(); I != E; ++I) EliminateUsesOfECGlobals(*I->second, ECGlobals); } return false; } // releaseMemory - If the pass pipeline is done with this pass, we can release // our memory... here... // void LocalDataStructures::releaseMemory() { for (hash_map::iterator I = DSInfo.begin(), E = DSInfo.end(); I != E; ++I) { I->second->getReturnNodes().erase(I->first); if (I->second->getReturnNodes().empty()) delete I->second; } // Empty map so next time memory is released, data structures are not // re-deleted. DSInfo.clear(); delete GlobalsGraph; GlobalsGraph = 0; }