//===-- X86/Printer.cpp - Convert X86 code to human readable rep. ---------===// // // This file contains a printer that converts from our internal representation // of LLVM code to a nice human readable form that is suitable for debuggging. // //===----------------------------------------------------------------------===// #include "X86.h" #include "X86InstrInfo.h" #include "llvm/Function.h" #include "llvm/Constant.h" #include "llvm/Target/TargetMachine.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineInstr.h" #include "Support/Statistic.h" namespace { struct Printer : public MachineFunctionPass { std::ostream &O; unsigned ConstIdx; Printer(std::ostream &o) : O(o), ConstIdx(0) {} virtual const char *getPassName() const { return "X86 Assembly Printer"; } void printConstantPool(MachineConstantPool *MCP, const TargetData &TD); bool runOnMachineFunction(MachineFunction &F); bool doInitialization(Module &M); bool doFinalization(Module &M); }; } /// createX86CodePrinterPass - Print out the specified machine code function to /// the specified stream. This function should work regardless of whether or /// not the function is in SSA form or not. /// Pass *createX86CodePrinterPass(std::ostream &O) { return new Printer(O); } // printConstantPool - Print out any constants which have been spilled to // memory... void Printer::printConstantPool(MachineConstantPool *MCP, const TargetData &TD){ const std::vector &CP = MCP->getConstants(); if (CP.empty()) return; for (unsigned i = 0, e = CP.size(); i != e; ++i) { O << "\t.section .rodata\n"; O << "\t.align " << (unsigned)TD.getTypeAlignment(CP[i]->getType()) << "\n"; O << ".CPI" << i+ConstIdx << ":\t\t\t\t\t#" << *CP[i] << "\n"; O << "\t*Constant output not implemented yet!*\n\n"; } ConstIdx += CP.size(); // Don't recycle constant pool index numbers } /// runOnFunction - This uses the X86InstructionInfo::print method /// to print assembly for each instruction. bool Printer::runOnMachineFunction(MachineFunction &MF) { static unsigned BBNumber = 0; const TargetMachine &TM = MF.getTarget(); const TargetInstrInfo &TII = TM.getInstrInfo(); // Print out constants referenced by the function printConstantPool(MF.getConstantPool(), TM.getTargetData()); // Print out labels for the function. O << "\t.text\n"; O << "\t.align 16\n"; O << "\t.globl\t" << MF.getFunction()->getName() << "\n"; O << "\t.type\t" << MF.getFunction()->getName() << ", @function\n"; O << MF.getFunction()->getName() << ":\n"; // Print out code for the function. for (MachineFunction::const_iterator I = MF.begin(), E = MF.end(); I != E; ++I) { // Print a label for the basic block. O << ".BB" << BBNumber++ << ":\n"; for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end(); II != E; ++II) { // Print the assembly for the instruction. O << "\t"; TII.print(*II, O, TM); } } // We didn't modify anything. return false; } static bool isScale(const MachineOperand &MO) { return MO.isImmediate() && (MO.getImmedValue() == 1 || MO.getImmedValue() == 2 || MO.getImmedValue() == 4 || MO.getImmedValue() == 8); } static bool isMem(const MachineInstr *MI, unsigned Op) { if (MI->getOperand(Op).isFrameIndex()) return true; if (MI->getOperand(Op).isConstantPoolIndex()) return true; return Op+4 <= MI->getNumOperands() && MI->getOperand(Op ).isRegister() &&isScale(MI->getOperand(Op+1)) && MI->getOperand(Op+2).isRegister() &&MI->getOperand(Op+3).isImmediate(); } static void printOp(std::ostream &O, const MachineOperand &MO, const MRegisterInfo &RI) { switch (MO.getType()) { case MachineOperand::MO_VirtualRegister: if (Value *V = MO.getVRegValueOrNull()) { O << "<" << V->getName() << ">"; return; } // FALLTHROUGH case MachineOperand::MO_MachineRegister: if (MO.getReg() < MRegisterInfo::FirstVirtualRegister) O << RI.get(MO.getReg()).Name; else O << "%reg" << MO.getReg(); return; case MachineOperand::MO_SignExtendedImmed: case MachineOperand::MO_UnextendedImmed: O << (int)MO.getImmedValue(); return; case MachineOperand::MO_PCRelativeDisp: O << MO.getVRegValue()->getName(); return; case MachineOperand::MO_GlobalAddress: O << MO.getGlobal()->getName(); return; case MachineOperand::MO_ExternalSymbol: O << MO.getSymbolName(); return; default: O << ""; return; } } static const std::string sizePtr(const TargetInstrDescriptor &Desc) { switch (Desc.TSFlags & X86II::ArgMask) { default: assert(0 && "Unknown arg size!"); case X86II::Arg8: return "BYTE PTR"; case X86II::Arg16: return "WORD PTR"; case X86II::Arg32: return "DWORD PTR"; case X86II::Arg64: return "QWORD PTR"; case X86II::ArgF32: return "DWORD PTR"; case X86II::ArgF64: return "QWORD PTR"; case X86II::ArgF80: return "XWORD PTR"; } } static void printMemReference(std::ostream &O, const MachineInstr *MI, unsigned Op, const MRegisterInfo &RI) { assert(isMem(MI, Op) && "Invalid memory reference!"); if (MI->getOperand(Op).isFrameIndex()) { O << "[frame slot #" << MI->getOperand(Op).getFrameIndex(); if (MI->getOperand(Op+3).getImmedValue()) O << " + " << MI->getOperand(Op+3).getImmedValue(); O << "]"; return; } else if (MI->getOperand(Op).isConstantPoolIndex()) { O << "[.CPI" << MI->getOperand(Op).getConstantPoolIndex(); if (MI->getOperand(Op+3).getImmedValue()) O << " + " << MI->getOperand(Op+3).getImmedValue(); O << "]"; return; } const MachineOperand &BaseReg = MI->getOperand(Op); int ScaleVal = MI->getOperand(Op+1).getImmedValue(); const MachineOperand &IndexReg = MI->getOperand(Op+2); int DispVal = MI->getOperand(Op+3).getImmedValue(); O << "["; bool NeedPlus = false; if (BaseReg.getReg()) { printOp(O, BaseReg, RI); NeedPlus = true; } if (IndexReg.getReg()) { if (NeedPlus) O << " + "; if (ScaleVal != 1) O << ScaleVal << "*"; printOp(O, IndexReg, RI); NeedPlus = true; } if (DispVal) { if (NeedPlus) if (DispVal > 0) O << " + "; else { O << " - "; DispVal = -DispVal; } O << DispVal; } O << "]"; } // print - Print out an x86 instruction in intel syntax void X86InstrInfo::print(const MachineInstr *MI, std::ostream &O, const TargetMachine &TM) const { unsigned Opcode = MI->getOpcode(); const TargetInstrDescriptor &Desc = get(Opcode); switch (Desc.TSFlags & X86II::FormMask) { case X86II::Pseudo: // Print pseudo-instructions as comments; either they should have been // turned into real instructions by now, or they don't need to be // seen by the assembler (e.g., IMPLICIT_USEs.) O << "# "; if (Opcode == X86::PHI) { printOp(O, MI->getOperand(0), RI); O << " = phi "; for (unsigned i = 1, e = MI->getNumOperands(); i != e; i+=2) { if (i != 1) O << ", "; O << "["; printOp(O, MI->getOperand(i), RI); O << ", "; printOp(O, MI->getOperand(i+1), RI); O << "]"; } } else { unsigned i = 0; if (MI->getNumOperands() && (MI->getOperand(0).opIsDefOnly() || MI->getOperand(0).opIsDefAndUse())) { printOp(O, MI->getOperand(0), RI); O << " = "; ++i; } O << getName(MI->getOpcode()); for (unsigned e = MI->getNumOperands(); i != e; ++i) { O << " "; if (MI->getOperand(i).opIsDefOnly() || MI->getOperand(i).opIsDefAndUse()) O << "*"; printOp(O, MI->getOperand(i), RI); if (MI->getOperand(i).opIsDefOnly() || MI->getOperand(i).opIsDefAndUse()) O << "*"; } } O << "\n"; return; case X86II::RawFrm: // The accepted forms of Raw instructions are: // 1. nop - No operand required // 2. jmp foo - PC relative displacement operand // 3. call bar - GlobalAddress Operand or External Symbol Operand // assert(MI->getNumOperands() == 0 || (MI->getNumOperands() == 1 && (MI->getOperand(0).isPCRelativeDisp() || MI->getOperand(0).isGlobalAddress() || MI->getOperand(0).isExternalSymbol())) && "Illegal raw instruction!"); O << getName(MI->getOpcode()) << " "; if (MI->getNumOperands() == 1) { printOp(O, MI->getOperand(0), RI); } O << "\n"; return; case X86II::AddRegFrm: { // There are currently two forms of acceptable AddRegFrm instructions. // Either the instruction JUST takes a single register (like inc, dec, etc), // or it takes a register and an immediate of the same size as the register // (move immediate f.e.). Note that this immediate value might be stored as // an LLVM value, to represent, for example, loading the address of a global // into a register. The initial register might be duplicated if this is a // M_2_ADDR_REG instruction // assert(MI->getOperand(0).isRegister() && (MI->getNumOperands() == 1 || (MI->getNumOperands() == 2 && (MI->getOperand(1).getVRegValueOrNull() || MI->getOperand(1).isImmediate() || MI->getOperand(1).isRegister() || MI->getOperand(1).isGlobalAddress() || MI->getOperand(1).isExternalSymbol()))) && "Illegal form for AddRegFrm instruction!"); unsigned Reg = MI->getOperand(0).getReg(); O << getName(MI->getOpCode()) << " "; printOp(O, MI->getOperand(0), RI); if (MI->getNumOperands() == 2 && (!MI->getOperand(1).isRegister() || MI->getOperand(1).getVRegValueOrNull() || MI->getOperand(1).isGlobalAddress() || MI->getOperand(1).isExternalSymbol())) { O << ", "; printOp(O, MI->getOperand(1), RI); } O << "\n"; return; } case X86II::MRMDestReg: { // There are two acceptable forms of MRMDestReg instructions, those with 2, // 3 and 4 operands: // // 2 Operands: this is for things like mov that do not read a second input // // 3 Operands: in this form, the first two registers (the destination, and // the first operand) should be the same, post register allocation. The 3rd // operand is an additional input. This should be for things like add // instructions. // // 4 Operands: This form is for instructions which are 3 operands forms, but // have a constant argument as well. // bool isTwoAddr = isTwoAddrInstr(Opcode); assert(MI->getOperand(0).isRegister() && (MI->getNumOperands() == 2 || (isTwoAddr && MI->getOperand(1).isRegister() && MI->getOperand(0).getReg() == MI->getOperand(1).getReg() && (MI->getNumOperands() == 3 || (MI->getNumOperands() == 4 && MI->getOperand(3).isImmediate())))) && "Bad format for MRMDestReg!"); O << getName(MI->getOpCode()) << " "; printOp(O, MI->getOperand(0), RI); O << ", "; printOp(O, MI->getOperand(1+isTwoAddr), RI); if (MI->getNumOperands() == 4) { O << ", "; printOp(O, MI->getOperand(3), RI); } O << "\n"; return; } case X86II::MRMDestMem: { // These instructions are the same as MRMDestReg, but instead of having a // register reference for the mod/rm field, it's a memory reference. // assert(isMem(MI, 0) && MI->getNumOperands() == 4+1 && MI->getOperand(4).isRegister() && "Bad format for MRMDestMem!"); O << getName(MI->getOpCode()) << " " << sizePtr(Desc) << " "; printMemReference(O, MI, 0, RI); O << ", "; printOp(O, MI->getOperand(4), RI); O << "\n"; return; } case X86II::MRMSrcReg: { // There is a two forms that are acceptable for MRMSrcReg instructions, // those with 3 and 2 operands: // // 3 Operands: in this form, the last register (the second input) is the // ModR/M input. The first two operands should be the same, post register // allocation. This is for things like: add r32, r/m32 // // 2 Operands: this is for things like mov that do not read a second input // assert(MI->getOperand(0).isRegister() && MI->getOperand(1).isRegister() && (MI->getNumOperands() == 2 || (MI->getNumOperands() == 3 && MI->getOperand(2).isRegister())) && "Bad format for MRMSrcReg!"); if (MI->getNumOperands() == 3 && MI->getOperand(0).getReg() != MI->getOperand(1).getReg()) O << "**"; O << getName(MI->getOpCode()) << " "; printOp(O, MI->getOperand(0), RI); O << ", "; printOp(O, MI->getOperand(MI->getNumOperands()-1), RI); O << "\n"; return; } case X86II::MRMSrcMem: { // These instructions are the same as MRMSrcReg, but instead of having a // register reference for the mod/rm field, it's a memory reference. // assert(MI->getOperand(0).isRegister() && (MI->getNumOperands() == 1+4 && isMem(MI, 1)) || (MI->getNumOperands() == 2+4 && MI->getOperand(1).isRegister() && isMem(MI, 2)) && "Bad format for MRMDestReg!"); if (MI->getNumOperands() == 2+4 && MI->getOperand(0).getReg() != MI->getOperand(1).getReg()) O << "**"; O << getName(MI->getOpCode()) << " "; printOp(O, MI->getOperand(0), RI); O << ", " << sizePtr(Desc) << " "; printMemReference(O, MI, MI->getNumOperands()-4, RI); O << "\n"; return; } case X86II::MRMS0r: case X86II::MRMS1r: case X86II::MRMS2r: case X86II::MRMS3r: case X86II::MRMS4r: case X86II::MRMS5r: case X86II::MRMS6r: case X86II::MRMS7r: { // In this form, the following are valid formats: // 1. sete r // 2. cmp reg, immediate // 2. shl rdest, rinput // 3. sbb rdest, rinput, immediate [rdest = rinput] // assert(MI->getNumOperands() > 0 && MI->getNumOperands() < 4 && MI->getOperand(0).isRegister() && "Bad MRMSxR format!"); assert((MI->getNumOperands() != 2 || MI->getOperand(1).isRegister() || MI->getOperand(1).isImmediate())&& "Bad MRMSxR format!"); assert((MI->getNumOperands() < 3 || (MI->getOperand(1).isRegister() && MI->getOperand(2).isImmediate())) && "Bad MRMSxR format!"); if (MI->getNumOperands() > 1 && MI->getOperand(1).isRegister() && MI->getOperand(0).getReg() != MI->getOperand(1).getReg()) O << "**"; O << getName(MI->getOpCode()) << " "; printOp(O, MI->getOperand(0), RI); if (MI->getOperand(MI->getNumOperands()-1).isImmediate()) { O << ", "; printOp(O, MI->getOperand(MI->getNumOperands()-1), RI); } O << "\n"; return; } case X86II::MRMS0m: case X86II::MRMS1m: case X86II::MRMS2m: case X86II::MRMS3m: case X86II::MRMS4m: case X86II::MRMS5m: case X86II::MRMS6m: case X86II::MRMS7m: { // In this form, the following are valid formats: // 1. sete [m] // 2. cmp [m], immediate // 2. shl [m], rinput // 3. sbb [m], immediate // assert(MI->getNumOperands() >= 4 && MI->getNumOperands() <= 5 && isMem(MI, 0) && "Bad MRMSxM format!"); assert((MI->getNumOperands() != 5 || MI->getOperand(4).isImmediate()) && "Bad MRMSxM format!"); O << getName(MI->getOpCode()) << " "; O << sizePtr(Desc) << " "; printMemReference(O, MI, 0, RI); if (MI->getNumOperands() == 5) { O << ", "; printOp(O, MI->getOperand(4), RI); } O << "\n"; return; } default: O << "\tUNKNOWN FORM:\t\t-"; MI->print(O, TM); break; } } bool Printer::doInitialization(Module &M) { // Tell gas we are outputting Intel syntax (not AT&T syntax) assembly, // with no % decorations on register names. O << "\t.intel_syntax noprefix\n"; return false; // success } bool Printer::doFinalization(Module &M) { // FIXME: We may have to print out constants here. return false; // success }