//===- FastISelEmitter.cpp - Generate an instruction selector -------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This tablegen backend emits a "fast" instruction selector. // // This instruction selection method is designed to emit very poor code // quickly. Also, it is not designed to do much lowering, so most illegal // types (e.g. i64 on 32-bit targets) and operations (e.g. calls) are not // supported and cannot easily be added. Blocks containing operations // that are not supported need to be handled by a more capable selector, // such as the SelectionDAG selector. // // The intended use for "fast" instruction selection is "-O0" mode // compilation, where the quality of the generated code is irrelevant when // weighed against the speed at which the code can be generated. // // If compile time is so important, you might wonder why we don't just // skip codegen all-together, emit LLVM bytecode files, and execute them // with an interpreter. The answer is that it would complicate linking and // debugging, and also because that isn't how a compiler is expected to // work in some circles. // // If you need better generated code or more lowering than what this // instruction selector provides, use the SelectionDAG (DAGISel) instruction // selector instead. If you're looking here because SelectionDAG isn't fast // enough, consider looking into improving the SelectionDAG infastructure // instead. At the time of this writing there remain several major // opportunities for improvement. // //===----------------------------------------------------------------------===// #include "FastISelEmitter.h" #include "Record.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Streams.h" #include "llvm/ADT/VectorExtras.h" using namespace llvm; namespace { /// OperandsSignature - This class holds a description of a list of operand /// types. It has utility methods for emitting text based on the operands. /// struct OperandsSignature { std::vector Operands; bool operator<(const OperandsSignature &O) const { return Operands < O.Operands; } bool empty() const { return Operands.empty(); } /// initialize - Examine the given pattern and initialize the contents /// of the Operands array accordingly. Return true if all the operands /// are supported, false otherwise. /// bool initialize(TreePatternNode *InstPatNode, const CodeGenTarget &Target, MVT::SimpleValueType VT, const CodeGenRegisterClass *DstRC) { if (!InstPatNode->isLeaf() && InstPatNode->getOperator()->getName() == "imm") { Operands.push_back("i"); return true; } for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) { TreePatternNode *Op = InstPatNode->getChild(i); // For now, filter out any operand with a predicate. if (!Op->getPredicateFn().empty()) return false; // For now, filter out any operand with multiple values. if (Op->getExtTypes().size() != 1) return false; // For now, all the operands must have the same type. if (Op->getTypeNum(0) != VT) return false; if (!Op->isLeaf()) { if (Op->getOperator()->getName() == "imm") { Operands.push_back("i"); return true; } // For now, ignore fpimm and other non-leaf nodes. return false; } DefInit *OpDI = dynamic_cast(Op->getLeafValue()); if (!OpDI) return false; Record *OpLeafRec = OpDI->getDef(); // TODO: handle instructions which have physreg operands. if (OpLeafRec->isSubClassOf("Register")) return false; // For now, the only other thing we accept is register operands. if (!OpLeafRec->isSubClassOf("RegisterClass")) return false; // For now, require the register operands' register classes to all // be the same. const CodeGenRegisterClass *RC = &Target.getRegisterClass(OpLeafRec); if (!RC) return false; // For now, all the operands must have the same register class. if (DstRC != RC) return false; Operands.push_back("r"); } return true; } void PrintParameters(std::ostream &OS) const { for (unsigned i = 0, e = Operands.size(); i != e; ++i) { if (Operands[i] == "r") { OS << "unsigned Op" << i; } else if (Operands[i] == "i") { OS << "uint64_t imm" << i; } else { assert("Unknown operand kind!"); abort(); } if (i + 1 != e) OS << ", "; } } void PrintArguments(std::ostream &OS) const { for (unsigned i = 0, e = Operands.size(); i != e; ++i) { if (Operands[i] == "r") { OS << "Op" << i; } else if (Operands[i] == "i") { OS << "imm" << i; } else { assert("Unknown operand kind!"); abort(); } if (i + 1 != e) OS << ", "; } } void PrintManglingSuffix(std::ostream &OS) const { for (unsigned i = 0, e = Operands.size(); i != e; ++i) { OS << Operands[i]; } } }; /// InstructionMemo - This class holds additional information about an /// instruction needed to emit code for it. /// struct InstructionMemo { std::string Name; const CodeGenRegisterClass *RC; }; } static std::string getOpcodeName(Record *Op, CodeGenDAGPatterns &CGP) { return CGP.getSDNodeInfo(Op).getEnumName(); } static std::string getLegalCName(std::string OpName) { std::string::size_type pos = OpName.find("::"); if (pos != std::string::npos) OpName.replace(pos, 2, "_"); return OpName; } void FastISelEmitter::run(std::ostream &OS) { EmitSourceFileHeader("\"Fast\" Instruction Selector for the " + Target.getName() + " target", OS); OS << "#include \"llvm/CodeGen/FastISel.h\"\n"; OS << "\n"; OS << "namespace llvm {\n"; OS << "\n"; OS << "namespace " << InstNS.substr(0, InstNS.size() - 2) << " {\n"; OS << "\n"; typedef std::map PredMap; typedef std::map RetPredMap; typedef std::map TypeRetPredMap; typedef std::map OpcodeTypeRetPredMap; typedef std::map OperandsOpcodeTypeRetPredMap; OperandsOpcodeTypeRetPredMap SimplePatterns; // Scan through all the patterns and record the simple ones. for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(), E = CGP.ptm_end(); I != E; ++I) { const PatternToMatch &Pattern = *I; // For now, just look at Instructions, so that we don't have to worry // about emitting multiple instructions for a pattern. TreePatternNode *Dst = Pattern.getDstPattern(); if (Dst->isLeaf()) continue; Record *Op = Dst->getOperator(); if (!Op->isSubClassOf("Instruction")) continue; CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(Op->getName()); if (II.OperandList.empty()) continue; // For now, ignore instructions where the first operand is not an // output register. Record *Op0Rec = II.OperandList[0].Rec; if (!Op0Rec->isSubClassOf("RegisterClass")) continue; const CodeGenRegisterClass *DstRC = &Target.getRegisterClass(Op0Rec); if (!DstRC) continue; // Inspect the pattern. TreePatternNode *InstPatNode = Pattern.getSrcPattern(); if (!InstPatNode) continue; if (InstPatNode->isLeaf()) continue; Record *InstPatOp = InstPatNode->getOperator(); std::string OpcodeName = getOpcodeName(InstPatOp, CGP); MVT::SimpleValueType VT = InstPatNode->getTypeNum(0); // For now, filter out instructions which just set a register to // an Operand or an immediate, like MOV32ri. if (InstPatOp->isSubClassOf("Operand")) continue; // For now, filter out any instructions with predicates. if (!InstPatNode->getPredicateFn().empty()) continue; // Check all the operands. OperandsSignature Operands; if (!Operands.initialize(InstPatNode, Target, VT, DstRC)) continue; // Get the predicate that guards this pattern. std::string PredicateCheck = Pattern.getPredicateCheck(); // Ok, we found a pattern that we can handle. Remember it. InstructionMemo Memo = { Pattern.getDstPattern()->getOperator()->getName(), DstRC }; assert(!SimplePatterns[Operands][OpcodeName][VT][VT].count(PredicateCheck) && "Duplicate pattern!"); SimplePatterns[Operands][OpcodeName][VT][VT][PredicateCheck] = Memo; } // Declare the target FastISel class. OS << "class FastISel : public llvm::FastISel {\n"; for (OperandsOpcodeTypeRetPredMap::const_iterator OI = SimplePatterns.begin(), OE = SimplePatterns.end(); OI != OE; ++OI) { const OperandsSignature &Operands = OI->first; const OpcodeTypeRetPredMap &OTM = OI->second; for (OpcodeTypeRetPredMap::const_iterator I = OTM.begin(), E = OTM.end(); I != E; ++I) { const std::string &Opcode = I->first; const TypeRetPredMap &TM = I->second; for (TypeRetPredMap::const_iterator TI = TM.begin(), TE = TM.end(); TI != TE; ++TI) { MVT::SimpleValueType VT = TI->first; OS << " unsigned FastEmit_" << getLegalCName(Opcode) << "_" << getLegalCName(getName(VT)) << "_"; Operands.PrintManglingSuffix(OS); OS << "(MVT::SimpleValueType RetVT"; if (!Operands.empty()) OS << ", "; Operands.PrintParameters(OS); OS << ");\n"; } OS << " unsigned FastEmit_" << getLegalCName(Opcode) << "_"; Operands.PrintManglingSuffix(OS); OS << "(MVT::SimpleValueType VT, MVT::SimpleValueType RetVT"; if (!Operands.empty()) OS << ", "; Operands.PrintParameters(OS); OS << ");\n"; } OS << " unsigned FastEmit_"; Operands.PrintManglingSuffix(OS); OS << "(MVT::SimpleValueType VT, MVT::SimpleValueType RetVT, ISD::NodeType Opcode"; if (!Operands.empty()) OS << ", "; Operands.PrintParameters(OS); OS << ");\n"; } OS << "\n"; // Declare the Subtarget member, which is used for predicate checks. OS << " const " << InstNS.substr(0, InstNS.size() - 2) << "Subtarget *Subtarget;\n"; OS << "\n"; // Declare the constructor. OS << "public:\n"; OS << " explicit FastISel(MachineFunction &mf)\n"; OS << " : llvm::FastISel(mf),\n"; OS << " Subtarget(&TM.getSubtarget<" << InstNS.substr(0, InstNS.size() - 2) << "Subtarget>()) {}\n"; OS << "};\n"; OS << "\n"; // Define the target FastISel creation function. OS << "llvm::FastISel *createFastISel(MachineFunction &mf) {\n"; OS << " return new FastISel(mf);\n"; OS << "}\n"; OS << "\n"; // Now emit code for all the patterns that we collected. for (OperandsOpcodeTypeRetPredMap::const_iterator OI = SimplePatterns.begin(), OE = SimplePatterns.end(); OI != OE; ++OI) { const OperandsSignature &Operands = OI->first; const OpcodeTypeRetPredMap &OTM = OI->second; for (OpcodeTypeRetPredMap::const_iterator I = OTM.begin(), E = OTM.end(); I != E; ++I) { const std::string &Opcode = I->first; const TypeRetPredMap &TM = I->second; OS << "// FastEmit functions for " << Opcode << ".\n"; OS << "\n"; // Emit one function for each opcode,type pair. for (TypeRetPredMap::const_iterator TI = TM.begin(), TE = TM.end(); TI != TE; ++TI) { MVT::SimpleValueType VT = TI->first; const RetPredMap &RM = TI->second; for (RetPredMap::const_iterator RI = RM.begin(), RE = RM.end(); RI != RE; ++RI) { const PredMap &PM = RI->second; bool HasPred = false; OS << "unsigned FastISel::FastEmit_" << getLegalCName(Opcode) << "_" << getLegalCName(getName(VT)) << "_"; Operands.PrintManglingSuffix(OS); OS << "(MVT::SimpleValueType RetVT"; if (!Operands.empty()) OS << ", "; Operands.PrintParameters(OS); OS << ") {\n"; // Emit code for each possible instruction. There may be // multiple if there are subtarget concerns. for (PredMap::const_iterator PI = PM.begin(), PE = PM.end(); PI != PE; ++PI) { std::string PredicateCheck = PI->first; const InstructionMemo &Memo = PI->second; if (PredicateCheck.empty()) { assert(!HasPred && "Multiple instructions match, at least one has " "a predicate and at least one doesn't!"); } else { OS << " if (" + PredicateCheck + ")\n"; OS << " "; HasPred = true; } OS << " return FastEmitInst_"; Operands.PrintManglingSuffix(OS); OS << "(" << InstNS << Memo.Name << ", "; OS << InstNS << Memo.RC->getName() << "RegisterClass"; if (!Operands.empty()) OS << ", "; Operands.PrintArguments(OS); OS << ");\n"; } // Return 0 if none of the predicates were satisfied. if (HasPred) OS << " return 0;\n"; OS << "}\n"; OS << "\n"; } } // Emit one function for the opcode that demultiplexes based on the type. OS << "unsigned FastISel::FastEmit_" << getLegalCName(Opcode) << "_"; Operands.PrintManglingSuffix(OS); OS << "(MVT::SimpleValueType VT, MVT::SimpleValueType RetVT"; if (!Operands.empty()) OS << ", "; Operands.PrintParameters(OS); OS << ") {\n"; OS << " switch (VT) {\n"; for (TypeRetPredMap::const_iterator TI = TM.begin(), TE = TM.end(); TI != TE; ++TI) { MVT::SimpleValueType VT = TI->first; std::string TypeName = getName(VT); OS << " case " << TypeName << ": return FastEmit_" << getLegalCName(Opcode) << "_" << getLegalCName(TypeName) << "_"; Operands.PrintManglingSuffix(OS); OS << "(RetVT"; if (!Operands.empty()) OS << ", "; Operands.PrintArguments(OS); OS << ");\n"; } OS << " default: return 0;\n"; OS << " }\n"; OS << "}\n"; OS << "\n"; } OS << "// Top-level FastEmit function.\n"; OS << "\n"; // Emit one function for the operand signature that demultiplexes based // on opcode and type. OS << "unsigned FastISel::FastEmit_"; Operands.PrintManglingSuffix(OS); OS << "(MVT::SimpleValueType VT, MVT::SimpleValueType RetVT, ISD::NodeType Opcode"; if (!Operands.empty()) OS << ", "; Operands.PrintParameters(OS); OS << ") {\n"; OS << " switch (Opcode) {\n"; for (OpcodeTypeRetPredMap::const_iterator I = OTM.begin(), E = OTM.end(); I != E; ++I) { const std::string &Opcode = I->first; OS << " case " << Opcode << ": return FastEmit_" << getLegalCName(Opcode) << "_"; Operands.PrintManglingSuffix(OS); OS << "(VT, RetVT"; if (!Operands.empty()) OS << ", "; Operands.PrintArguments(OS); OS << ");\n"; } OS << " default: return 0;\n"; OS << " }\n"; OS << "}\n"; OS << "\n"; } OS << "} // namespace X86\n"; OS << "\n"; OS << "} // namespace llvm\n"; } FastISelEmitter::FastISelEmitter(RecordKeeper &R) : Records(R), CGP(R), Target(CGP.getTargetInfo()), InstNS(Target.getInstNamespace() + "::") { assert(InstNS.size() > 2 && "Can't determine target-specific namespace!"); }